BAB IV ANALISA DATA DAN PEMBAHASAN

4.1. Profil Perusahaan

PT.Starcam Aparel Indonesia adalah salah satu perusahaan garmen yang berlokasi di Desa Mindahan Kecamatan Batealit Kabupaten Jepara Jawa Tengah, untuk lebih jelasnya dapat dilihat pada Gambar 4.1. Perusahaan ini merupakan pabrik garmen yang memproduksi berbagai jenis pakaiaan. Jumlah pekerja yang dimiliki sebanyak 1700 orang. Para pekerja berasal dari kota Jepara dan kota-kota lain diberbagai daerah. Perusahaan ini melakukan kegiatan produksi pada hari senin sampai hari Jum'at sedangkan hari Sabtu dan Minggu libur.

Gambar 4.1 Peta Lokasi Pabrik

Sumber: Google Maps (2019)

Jenis-jenis pakaian yang diproduksi tergantung pesanan dari *Buyer*. *Buyer-buyer* PT. Starcam Aparel Indonesia berasal dari berbagai negara di dunia. Setiap *buyer* memiliki model-model pakaian yang berbeda dan setiap jenis pakaian memiliki cara pengerjaan yang berbeda pula.

Berbagai macam model pakaian dikerjakan dengan sebaik mungkin agar hasil yang diperoleh tidak mengecewakan pihak *Buyer*. Ketelitian dalam pengerjaan sangat diperhatikan karena setiap pakaian yang dihasilkan memenuhi standar kualitas yang telah di tentukan oleh *Buyer* itu sendiri.

4.2. Gambaran Umum Produk

Style-ta 549430 adalah jenis pakaian yang diproduksi oleh PT. Starcam Aparel Indonesia. Produk ini dibuat dibagian *sewing line* 16 pada bulan Juni tahun 2018, model pakaian ini memiliki bagian *hoodie*. *Hoodie* sendiri adalah kain yang digunakan untuk penutup kepala, untuk lebih jelasnya dalam memahami *hoodie* yang dimaksut dapat dilihat pada Gambar 4.2.

Gambar 4.2 Desain Produk

Sumber: PT. Starcam Aparel Indonesia (2018)

4.3. Pengumpulan Data

Data yang digunakan dalam penelitian ini diperoleh dari laporan produksi *Sewing line* 16 pada bualan Juni 2018. Dari data laporan tersebut akan diolah dalam penelitian ini untuk mencari solusi terhadap keseimbangan lintasan yang paling baik.

4.4. Elemen-Elemen Kerja dan Jumlah Waktu Kerja

Elemen-elemen pembuatan produk *style*-ta 549430 meliputi 30 proses yang harus dilalui mulai dari elemen kerja pertama hingga elemen kerja yang terkahir dan masing-masing elemen kerja sudah miliki standar waktu yang telah ditetapakan. Data elemen-elemen kerja dan waktu setiap elemen dapat dilihat pada Tabel 4.1.

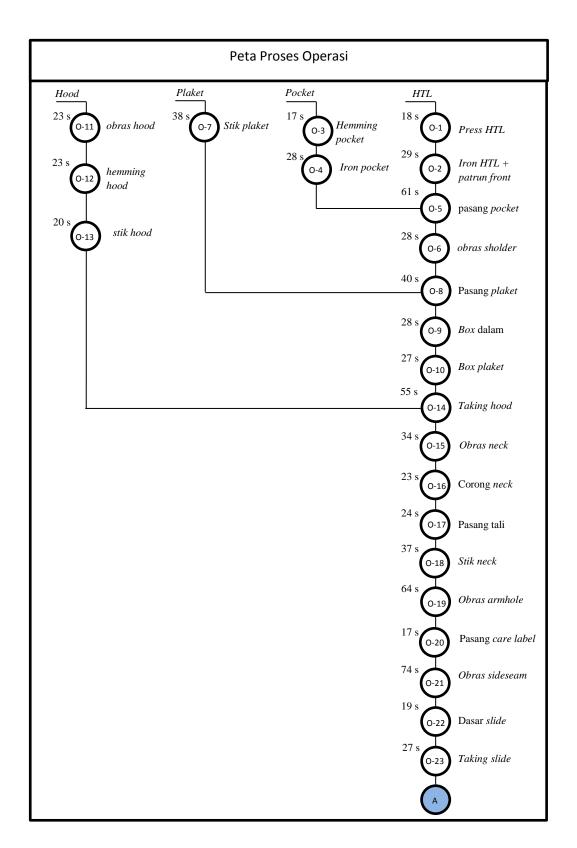
4.5. Jumlah Waktu Kerja dan Terget Perhari

Setiap pekerja bekerja 8 jam perhari mulai pukul 07.00 sampai pukul 16.00 dan waktu istirahat sebanyak satu jam.. setiap hari *line* 16 memiliki jumlah target yang harus dipenuhi yaitu sebesar 1700 produk.

4.6. Peta Proses Operasi

Peta proses operasi berguna untuk mengetahui tahapan-tahapan yang dilalui material dari beberapa proses hingga menjadi sebuah produk. Untuk mengetahui peta proses operasi dari produk *style-ta* 549530 dapat dilihat pada Gambar 4.3.

4.7. Pengolahan Data


4.7.1. Precedence diagram

Precedence diagram digunakan untuk mengetahui urutan dari setiap elemen kerja dalam proses produksi untuk membuat sebuah produk. Pada *line* 16 untuk mengerjakan produk *style-ta* 549530 memiliki 30 elemen kerja yang saling berhubungan satu dengan yang lain, untuk lebih jelas dalam keterkaitan masing-masing elemen dapat dilihat *Precedence diagram* pada Gambar 4.4.


Tabel 4.1 Elemen-Elemen Kerja dan Waktu Setiap Elemen

No	Elemen kerja	Waktu
1	Press HTL	18
2	Iron HTL + Patrun Front	29
3	Hemming pocket	17
4	Iron pocket	28
5	Pasang pocket	61
6	Obras sholder	28
7	Stik plaket	38
8	Pasang <i>plaket</i>	40
9	Box dalam	28
10	Box plaket	27
11	Obras hood	23
12	Hemming hood	23
13	Stik hood	20
14	Taking hood	55
15	Obras neck	34
16	Corong neck	23
17	Pasang tali	24
18	Stik neck	37
19	Obras armhole	64
20	Pasang care label	17
21	Obras sideseam	74
22	Dasar slide	19
23	Taking slide	27
24	Pasang slide	65
25	Hemming slevee	60
26	Tutup slide	81
27	Hemming bawah	26
28	Bartex	28
29	Lubang kancing	42
30	Pasang kancing	32

Sumber: PT. Starcam Apparel Indonesia (2018)

Gambar 4.3 Peta Proses Operasi

Gambar 4.3 Peta Proses Operasi (lanjutan)

4.7.2. Menghitung waktu siklus

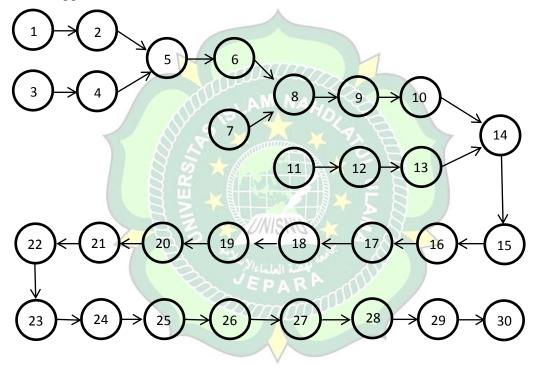
Perhitungan waktu siklus atau *cycle time* bertujuan untuk mengetahui berapakah waktu yang dibutuhkan dalam membuat sebuah produk disebuah stasiun atau berapa waktu yang dibutuhkan mulai material masuk kefasilitas produksi hingga sampai keluar, berikut adalah perhitungan dalam mencari waktu siklus:

 ti_{maks} = Waktu operasi terbesar dalam lintasan

= 81 detik

P = Jam kerja efektif perhari

= Jam kerja x jumlah pekerja


= 8 jam x 39 orang

= 28800 detik x 39 orang

= 1123200 detik

Q = Jumlah produksi perhari
= 1700 produk
CT = waktu siklus
=
$$ti_{maks} \le CT \le \frac{P}{Q}$$

= $81 \le CT \le \frac{1123200}{1700}$
= $81 \le CT \le 661$

Dari perhitungan diatas diketahui bahwa waktu siklus berada pada 81 detik hingga 661 detik

Gambar 4.4 precedence diagram

Sumber: Data yang Diolah (2019)

4.7.3. Perhitungan stasiun kerja

Perhitungan stasiun kerja menggunakan dua metode yaitu RPW dan Moodie Young. Dari hasil kedua perhitungan tersebut maka akan dilakukan perbandingan metode mana yang memiliki hasil yang terbaik. Berikut adalah perhitungan efisiensi stasiun kerja terdahulu, metode RPW dan Moodie Young yang dilakukan dalam mencari nilai efisiensi terbaik:

1. Menghitung efisiensi stasiun terdahulu

Hasil dari perhitungan efisiensi stasiun kerja terdahulu akan digunakan sebagai perbandingan hasil efisiensi sebelum dan sesudah dilakukan berbaikan. Berikut adalah perhitungan efisiensi stasiun terdahulu:

- a. Penyusunan stasiun kerja terdahulu
 Susunan stasiun kerja terdahulu dapat dilihat pada Tabel 4.2.
- b. Menghitung *Line Efficiency* (LE)Perhitungan *Line Efficiency* (LE) sebagai berikut :

LE=
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

= $\frac{(18+17+29.....+42+32)}{(30)(81)} \times 100\%$
= $\frac{1088}{(30)(81)} \times 100\%$
= 44,8%

c. Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi max - STi)^2}$$

= $\sqrt{(63^2 + 64^2 + 52^2 + ... + 39^2 + 49^2)}$
= 264

d. Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut :

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(17 \times 81) - 1088}{(17 \times 81)} \times 100\%$
= 20,99%

Tabel 4.2 Susunan Stasiun Kerja Terdahulu

Stasiun	Elemen	Ti	Waktu	Idle
Kerja	Kerja		Stasiun	
1	1	18	18	63
2	3	17	17	64
3	2	29	29	52
4	4	28	28	53
5	5	61	61	20
6	7	38	38	43
7	6	28	28	53
8	8	40	40	41
9	11	23	23	58
10	9	28	28	53
11	12	23	23	58
12	1000	27	27	54
13	13	20	20	61
14	14	55	55	26
15	15	34	34	47
16	16	23	23	58
17	17	24	24	57
18	18	37	37	44
19	19///	64	64	17
20	20	17	17	64
21	21/4	74	74	7
22	22	19	19	62
23	23	27	27	54
24	24	65	65	16
25	25	60	60	21
26	26	81	81	0
27	27	26	26	55
28	28	28	28	53
29	29	42	42	39
30	30	32	32	49

Sumber: Data Primer (2019)

2. Perhitungan dengan metode RPW.

Pencarian jumlah stasiun kerja dengan metode RPW memiliki beberapa tahapan yang harus dilakukan. Berikut adalah tahapan-tahapan perhitungan RPW:

a. Pembobotan elemen kerja

Pembobotan masing-masing elemen kerja yang berhubungan dengan waktu operasi yang memiliki waktu pengerjaan terpanjang dan terpendek. Untuk mengetahui waktu terpanjang dan terpendek maka setiap elemen harus menghitung jumlah waktu sebuah elemen dan seluruh elemen setelahnya yang saling berhubungan. Cara untuk mengetahui hubungan masing-masing elemen dapat dilihat pada *precedence diagram* pada Gambar 4.3 dan hasil pembobotan dapat dilihat pada Tabel 4.3.

Tabel 4.3 hasil pembobotan

Elemen Kerja	Bobot (detik)	Elemen Kerja	Bobot (detik)
1	939	16	619
2	921	NA 17	596
3	937	18	572
4	920	- 19	535
5	892	20	471
6 4	831	21 _	454
7 5	841	22	380
8	803//	23	361
9	763	24	334
10	735	25	269
11	774	R - 26	209
12	751	27	128
13	728	28	102
14	708	29	74
15	653 V	30	32

Sumber: Data yang Diolah (2019)

b. Mengurutkan elemen kerja

Setelah mengetahui jumlah bobot setiap elemen kerja maka akan diurutkan. Urutan elemen kerja berdasarkan bobot dapat dilihat pada Tabel 4.4

Tabel 4.4 Urutan Elemen Kerja Berdasrkan Bobot

	Elemen kerja	Bobot	Ti	
	1	939	18	
	3	937	17	
	2	921	29	
	4	920	28	
	5	892	61	
	7	841	38	
	6	831	28	
	8	803	40	
	11	774	23	
	9	763	28	
	12	751	23	
	10	735	27	
	13	728	20	
	14	708	55	
	15	653	34	
	16 AN	619	23	
	17	596	24	
	18	572	37	
	19	535	64	
	20	471	17	
	21	454	74	
	3 22	380	19	
	23	361	27	
77	24	334	65	1
	25	269	60	
	26	209	81	
	27	128	26	
	28	102	28	
	29	74	42	
	30	32	32	
	C 1 D .	D' 1 1	(2010)	

c. Penyusunan stasiun kerja

Penyusunan stasiun kerja adalah mengalokasikan elemen-elemen kerja dalam stasiun yang sama tapi jumlah waktu operasi tidak boleh melewati waktu siklus. Setelah melakukan perhitungan waktu siklus diperoleh hasil 81detik sampai 661 detik, maka untuk mendapatkan hasil yang maksimal akan dilakukan ujicoba hingga mendapatkan hasil

yang paling baik. Berikut adalah rangkaian ujicoba dalam mencari hasil yang paling optimal :

1) Percobaan waktu siklus 81 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal

Jumlah stasiun minimal ketika waktu siklus 81 detik dapat dihitung sebagai berikut :

Stasiun kerja minimal
$$= \frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+32)}{81}$$

$$= \frac{1088}{81}$$

$$= 13,43$$

$$= 14 \text{ stasiun}$$

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.5.

c) Menghitung Line Efficiency (LE)

Perhitungan Line Efficiency (LE) sebagai berikut :

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

= $\frac{(18+17+29.....+42+32)}{(17)(81)} \times 100\%$
= $\frac{1088}{(17)(81)} \times 100\%$
= 79,1%

d) Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

$$= \sqrt{(17^2 + 53^2 + 20^2 + \dots + 27^2 + 7^2)}$$

= 93,69

Tabel 4.5 Stasiun Kerja RPW Waktu Siklus 81Detik

Stasiun	Elemen	æ.	Waktu	7 11	
kerja	kerja	Ti	Stasiun	Idle	
	1	18			
1	3	17	64	17	
	2	29			
2	4	28	28	53	
3	5	61	61	20	
4	7	38	66	15	
4	6	28		13	
5	8	40	63	18	
3	11	23	03	10	
	سوس	28	8		
6	12	23	78	3	
	10	27			
S174	13	20	75	6	
	14	55	2	50	
IL R	15	34		In 71	
8	16	23	81	0	
BZ	17///	24	THE STATE OF	\(\frac{1}{2}\)	
9	18	37	37	44	
10	19	64	81	0	
10	20	17		0	
11	21777	74	74	7	
12	22	19	46	35	
	23	27		33	
13	24	65	65	16	
14	25	60	60	21	
15	26	81	81	0	
16	27	26	54	27	
10	28	28	J 4	<i>Δ1</i>	
17	29	42	74	7	
1/	30	32	/4	/	

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut:

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(17 \times 81) - 1088}{(17 \times 81)} \times 100\%$
= $20,99\%$

2) Percobaan waktu siklus 92 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal
 Jumlah stasiun minimal ketika waktu siklus 92 detik dapat
 dihitung sebagai berikut :

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+32)}{92}$$

$$= \frac{1088}{92}$$

$$= 11,83$$

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.6.

= 12 stasiun

c) Menghitung *Line Efficiency* (LE)

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(15)(92)} x 100\%$
= $\frac{1088}{(15)(92)} x 100\%$
= $78,84\%$

Tabel 4.6 Stasiun Kerja RPW Waktu Siklus 92 Detik

Stasiun	Elemen	Ti	Waktu	Idle	
Kerja	Kerja	11	Stasiun	Tare	
	1	18			
1	3	17	92	0	
	2	29	92	U	
	4	28			
2	5	61	61	31	
3	7	38	66	26	
	6	28	00	20	
	8	40			
4	11	23	91	1	
	9	28			
	12	23			
5	10	27	70	22	
	13	20	and		
6	14	55	400	2	
	15	34	89	3	
D Z	16	23	* 3		
370	17	24	84	8	
3 6	18	37		= 5	
	19	64	01	5118	
8	20///	S17\	81	11	
9	21	74	74	18	
10	22	19	10	16	
10	23	27	46	46	
11	2477	65	65	27	
12	25	60	60	32	
13	26	81	81	11	
14	27	26	54	38	
	28	28	54	38	
1.5	29	42	7.4	10	
15	30	32	74	18	
~ .					

d) Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

$$SI = \sqrt{\sum_{i=1}^{K} (STi \, max - STi)^2}$$

$$= \sqrt{(0^2 + 31^2 + 26^2 + \dots + 38^2 + 18^2)}$$

= 91,64

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut :

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(15 \times 92) - 1088}{(15 \times 92)} \times 100\%$
= 21,16%

3) Percobaan waktu siklus 99 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal

Jumlah stasiun minimal ketika waktu siklus 99 detik dapat
dihitung sebagai berikut:

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+32)}{99}$$

$$= \frac{1088}{99}$$

$$= 10,99$$

= 11 stasiun

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.7.

c) Menghitung *Line* Efficiency (LE)

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

$$= \frac{(18+17+29.....+42+32)}{(13)(99)} \times 100\%$$
$$= \frac{1088}{(13)(99)} \times 100\%$$
$$= 84,5\%$$

Tabel 4.7 Stasiun Kerja RPW Waktu Siklus 99 Detik

Stasiun Kerja	Elemen kerja	Ti	Waktu Stasiun	Idle	
Reija	1	18	Stasian		
	3	17			
1	2	29	92	7	
	4	28			
	5	61		1.	
2	700	38	99	0	
	6	28			
3	8	40	91	8	١
N. F	11	23	# 7	B.	
No	9	28		2 8	
	12	23		- 8	
44/1/	10	27	98		
	13//	20			
5	14	55	89	10	
	ماء/15	34	89	10	
	16	23			/
6	17//	24	84	15	
	18	37			
7	19	64	81	18	
,	20	17	01	10	
8	21	74	93	6	
	22	19	73		
9	23	27	92	7	
	24	65			
10	25	60	60	39	
11	26	81	81	18	
	27	26			
12	28	28	96	3	
	29	42			
13	30	32	32	67	

d) Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(7^2 + 0^2 + 8^2 + ... + 3^2 + 67^2)}$
= 84,8

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut :

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(13 \times 99) - 1088}{(13 \times 99)} \times 100\%$
= 15,5%

4) Percobaan waktu siklus 120 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal

Jumlah stasiun minimal ketika waktu siklus 120 detik dapat dihitung sebagai berikut:

Stasiun kerja minimal
$$= \frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+32)}{120}$$

$$= \frac{1088}{120}$$

$$= 9,07$$

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.8.

= 10 stasiun

Tabel 4.8 RPW Percobaan Waktu Siklus 120 Detik

Stasiun	Elemen	Ti	Waktu	Idle			
Kerja	Kerja	11	Stasiun	Tuic			
	1	18					
1	3	17	02	02	92	28	
1	2	29)2	20			
	4	28					
2	5	61	99	21			
	7	38		21			
	6	28					
3	8	40	119	1			
<u> </u>	11	23	117	1			
	9	28					
	12	23					
4	10	27	70 5	5 0			
	13.14	20	Ton				
	14	55	,, ° €	8			
5	15	34	112				
(), E	16	23	* 7	. 8			
7 5	17	24		50			
6	18	37	61	59			
7	19	64	101	39			
	20///	S17\	81	39			
日。	21	74	9.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
8	22	19	120	0			
	23	27		Y			
9	24	65	65	55			
10	25	60	60	60			
	26	81					
11	27	26	107	13			
	28	28					
12	29	42	102	18			
	30	32					

c) Menghitung Line Efficiency (LE)

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

$$= \frac{(18+17+29.....+42+32)}{(17)(81)} \times 100\%$$

$$= \frac{1088}{(12)(120)} \times 100\%$$

$$= 75,6\%$$

d) Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi max - STi)^2}$$

= $\sqrt{(28^2 + 21^2 + 1^2 + ... + 13^2 + 18^2)}$
= 126

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut:

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(12 \times 120) - 1088}{(12 \times 120)} \times 100\%$
= 24,4%

5) Percobaan waktu siklus 125 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal
 Jumlah stasiun minimal ketika waktu siklus 125 detik dapat
 dihitung sebagai berikut :

Stasiun kerja minimal
$$= \frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+32)}{125}$$

$$= \frac{1088}{125}$$

$$= 8.7$$

$$= 9 \text{ stasiun}$$

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.9.

c) Menghitung Line Efficiency (LE)

Perhitungan Line Efficiency (LE) sebagai berikut :

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

= $\frac{(18+17+29.....+42+32)}{(11)(125)} \times 100\%$
= $\frac{1088}{(11)(125)} \times 100\%$
= 79,1%

d) Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi max - STi)^2}$$

= $\sqrt{(33^2 + 26^2 + 6^2 + \dots + 29^2 + 93^2)}$
= 123

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut :

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(11 \times 125) - 1088}{(11 \times 125)} \times 100\%$
= 20,9%

Tabel 4.9 RPW Percobaan Waktu Siklus 125 Detik

Stasiun	Elemen	Ti	Waktu	Idle	
Kerja	Kerja	11	Stasiun	Tate	
	1	18			
1	3	17	92	33	
1	2	29	92	33	
	4	28			
2	5	61	99	26	
2	7	38	99	26	
	6	28			
2	8	40	110	6	
3	11	23	119	6	
	9	28			
	12	23		1	
	10	27	125		
4	13	20	125	0	
(III)	14	55	HO,	à	
N. 6	15	34	* 7	B	
85	16	23	110		
5	17	24	118	7	
3 4	18	37			
BZ	19///	64	TITO OF		
6	20	17	81	44	
A	21/-	74	الم المالية		
7	22	19	120	5	
	23	27			
	24	65	105		
8	25	60	125	0	
9	26	81	81	44	
	27	26			
10	28	28	96	29	
	29	42			
11	30	32	32	93	

6) Percobaan waktu siklus 130 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal

Jumlah stasiun minimal ketika waktu siklus 130 detik dapat dihitung sebagai berikut :

Stasiun kerja minimal
$$= \frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+32)}{130}$$

$$= \frac{1088}{130}$$

$$= 8,37$$

$$= 9 \text{ stasiun}$$

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.10.

c) Menghitung *Line Efficiency* (LE)

Perhitungan *Line Efficiency* (LE) sebagai berikut:

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

= $\frac{(18+17+29.....+42+32)}{(10)(130)} \times 100\%$
= $\frac{1088}{(10)(130)} \times 100\%$
= 83,7%

d) Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(38^2 + 3^2 + 16^2 + \dots + 23^2 + 28^2)}$
= 80,5

Tabel 4.10 RPW Percobaan Waktu Siklus 130 Detik

Stasiun	Elemen	Ti	Waktu	Idle	
Kerja	Kerja	11	Stasiun	Tate	
	1	18			
1	3	17	92	38	
1	2	29	92	30	
	4	28			
	5	61			
2	7	38	127	3	
	6	28			
	8	40			
3	11	23	114	16	
3	9	28	114	10	
	12	23			
	10	27		1	
4	13	20	102	28	
	_14	55	HA		
000	15	34	1/4.	7	
5	16	23	118	12	
75	17	24	110	12	
3 5	18	37			
6	19	64	81	49	
日号	20	212/	01	49	
47	21	74	Tard.		
7	22	19	120	10	
	23	27			
8	24//	65	125	5	
0	25	60	123		
9	26	81	107	23	
9	27	26	107	23	
	28	28			
10	29	42	102	28	
	30	32			

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut :

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

$$= \frac{(10 \times 127) - 1088}{(10 \times 127)} \times 100\%$$
$$= 14,3\%$$

7) Percobaan waktu siklus 150 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal
 Jumlah stasiun minimal ketika waktu siklus 150 detik dapat
 dihitung sebagai berikut :

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$

= $\frac{(18+17+29.....+42+32)}{150}$

= $\frac{1088}{150}$

= $\frac{7,25}{150}$

= 8 stasiun

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.11.

c) Menghitung Line Efficiency (LE)

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

= $\frac{(18+17+29.....+42+32)}{(9)(150)} \times 100\%$
= $\frac{1088}{(9)(150)} \times 100\%$
= 80,6%

Tabel 4.11 RPW Percobaan Waktu Siklus 150 Detik

Stasiun	Elemen	Ti	Waktu	Idle	
Kerja	Kerja	11	Stasiun	Tate	
	1	18			
1	3	17	92	58	
1	2	29	92	36	
	4	28			
	5	61			
2	7	38	127	23	
	6	28			
	8	40			
	11	23			
3	9	28	141	9	
	12	23		1	
	1011	27	Tool !		
	13	20	132	18	
4	14	55			
	15	34			
	16	23			
	17	24		= \}	
5	18	37	142	8	
BZ	19///	64	142		
B	20	17	1.	XX	
B	ريا 21	74	· /	Q)	
6	22	19	120	30	
	23///	27			
7	24	65	125	25	
,	25	60	123	23	
	26	81			
8	27	26	135	15	
	28	28			
9	29	42	74	76	
,	30	32	/ -	70	

d) Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(58^2 + 23^2 + 9^2 + ... + 15^2 + 76^2)}$
= 109

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut :

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(9 \times 142) - 1088}{(9 \times 142)} \times 100\%$
= $14,9\%$

8) Percobaan waktu siklus 160 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal

Jumlah stasiun minimal ketika waktu siklus 160 detik dapat dihitung sebagai berikut:

Setasiun kerja minimal
$$=\frac{\sum_{i=1}^{N} ti}{WSi}$$

$$=\frac{1000}{160}$$

$$= 6.8$$

$$= 7 stasiun$$

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.12.

Tabel 4.12 RPW Percobaan Waktu Siklus 160 Detik

	Stasiun	Elemen	Ti	Waktu	Idle	
	Kerja	Kerja	11	Stasiun	Tate	
		1	18			
		3	17			
	1	2	29	153	7	
		4	28			
		5	61			
		7	38			
		6	28			
	2	8	40	157	3	
		11	23			
		9	28			
		12	23		1	
		10	27	Treat 1		
	3	13	20	159	1	
	All Se	14	55	HOLAN		
		15	34			
	VERSI)	16	23	148	12	
		17	24			
		18	37			
	日言	19///	64	THE STATE OF	. 8	
4	HO	20	17	J	X	
	B	21	74	107		
	5	22	19	137	23	1
		23/7	27			
		24	65	105	25	
	6	25	60	125	35	
		26	81			
	7	27	26	135	25	
		28	28			
	8	29	42			
		30	32	74	86	
	Sumber	·· Data va		iolah (20	19)	J

c) Menghitung Line Efficiency (LE)

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

$$= \frac{(18+17+29.....+42+32)}{(8)(160)} \times 100\%$$
$$= \frac{1088}{(8)(160)} \times 100\%$$
$$= 85\%$$

d) Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(7^2 + 3^2 + 1^2 + ... + 25^2 + 86^2)}$
= 99,9
e) Menghitung Balance *Delay* (D)

Perhitungan Balance Delay sebagai berikut:

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(8 \times 159) - 1088}{(8 \times 159)} \times 100\%$
= $\frac{14.5\%}{(8 \times 159)} \times \frac{100\%}{(8 \times 159)}$

9) Percobaan waktu siklus 191 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal

Jumlah stasiun minimal ketika waktu siklus 191 detik dapat dihitung sebagai berikut:

Stasiun kerja minimal
$$= \frac{\sum_{i=1}^{N} ti}{WSi}$$
$$= \frac{(18+17+29.....+42+32)}{191}$$
$$= 5.7$$
$$= 6 \text{ stasiun}$$

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.13.

Tabel 4.13 RPW Percobaan Waktu Siklus 191 Detik

	Stasiun	Elemen		Waktu		
	Kerja	Kerja	Ti	Stasiun	Idle	
		1	18	191		
	1	3	17		0	
		2	29			
		4	28			
		5	61			
		7	38			
		6	28			
	2	8	40	2189	2	
		11	23			
1		119	28			
		_12	23	HA		
	0	10	27	1/4	4	
	O Th	13	20	₹ ?		7
	ERS	14	55	173	18	
		15	34			
	3	16	23			
	目ろ	17	24			
	4	18	37	Sep. T.		
	B	19	64	A (У'	7
	4	20	17	174	17	
		21	74			
		22	19			
	5	23	^V 27	152	39	
		24	65			
		25	60			
	6	26	81	177	14	
		27	26			
		28	28			
		29	42			
	7	30	32	32	159	
	Sumber	: Data va	ng D	iolah (20	19)	•

Sumber: Data yang Diolah (2019)

c) Menghitung Line Efficiency (LE)

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(7)(191)} x 100\%$
= $\frac{1088}{(7)(191)} x 100\%$
= $81,4\%$

d) Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(0^2 + 2^2 + 18^2 + ... + 14^2 + 159^2)}$
= 166

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut:

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(7 \times 191) - 1088}{(7 \times 191)} \times 100\%$

10) Percobaan waktu siklus 210 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal
 Jumlah stasiun minimal ketika waktu siklus 210 detik dapat
 dihitung sebagai berikut :

Stasiun kerja minimal
$$= \frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+32)}{210}$$

$$= \frac{1088}{210}$$

$$= 5,18$$

$$= 6 \text{ stasiun}$$

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.14.

c) Menghitung Line Efficiency (LE)

Perhitungan Line Efficiency (LE) sebagai berikut:

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

= $\frac{(18+17+29.....+42+32)}{(6)(210)} \times 100\%$
= $\frac{1088}{(6)(210)} \times 100\%$
= $86,3\%$

d) Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(19^2 + 21^2 + 37^2 + 9^2 + 4^2 + 82^2)}$
= 94,8

Tabel 4.14 RPW Percobaan Waktu Siklus 210 Detik

Ctagina	Elaman		Walster		1
Stasiun Kerja	Elemen Kerja	Ti	Waktu Stasiun	Idle	
Kerja	1	18	Stasium		
	3	17			
	2	29	191	19	
1	4	28			
	5	61			
	7	38			
	6	28			
	8				
		40	189	21	
2	11	23			
2	9	28			
	12	23		1	
	1011	27	and		
	13	20			
	14	55	173	37	
NA	15	34			
3	16	23			
	17	24			
	18	37	# *	$\mathcal{U}_{\mathcal{L}}$	
BZ	19///	64	201	9	
Bo	20	17			
4	21/4	74			
	22	19			1
	23	27		1	
	24	65			
5	25	60	206	4	
	26	81			
	27	26	128 82		
	28	28			
6	29	42		82	

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut :

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(6 \times 206) - 1088}{(6 \times 206)} \times 100\%$
= 12%

11) Percobaan waktu siklus 250 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal
 Jumlah stasiun minimal ketika waktu siklus 250 detik dapat
 dihitung sebagai berikut :

Stasiun kerja minimal
$$= \frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+250)}{1088}$$

= 5 stasiun

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.15.

c) Menghitung *Line Efficiency* (LE)

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(5)(250)} x 100\%$
= $\frac{1088}{(5)(250)} x 100\%$
= 87%

Tabel 4.15 RPW Percobaan Waktu Siklus 250 Detik

	stasiun	Elemen	Tr:	Waktu	T 11	
	kerja	Kerja	Ti	Stasiun	Idle	
		1	18	219	31	
	1	3	17			
		2	29			
		4	28			
		5	61			
		7	38			
		6	28			
		8	40			
		11	23	250	0	
		9	28			
		12	23			
		10	27			
		13	20			
		14	55			
		15	34			
	S ERS	16	23	239	ULA _I	
		17	24			
		18	37			
		19///	64			
1		20	17			
		21//هام	74			
	4	22	19	171	79	/
		23	27			
		24	65			
		25	60			
	5	26	81	209 41		
		27	26			
		28	28		41	
		29	42			
		30	32			
	Sumbo	r · Doto vo	ng T	Violah (20)10)	

d) Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{31^2 + 0^2 + 11^2 + 79^2 + 41^2}$
= 94,9

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut :

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(5 \times 250) - 1088}{(5 \times 250)} \times 100\%$

12) Percobaan waktu siklus 282 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal

Jumlah stasiun minimal ketika waktu siklus 191 detik dapat dihitung sebagai berikut :

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$

$$=\frac{1088}{282}$$

=4 stasiun

b) Penyusunan stasiu kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.16.

Tabel 4.16 RPW Percobaan Waktu Siklus 282 Detik

	Stasiun	Elemen	Ti	Waktu	Idle		
	Kerja	Kerja	11	Stasiun	Tate		
		1	18				
		3	17				
		2	29				
		4	28				
	1	5	61	282	0		
		7	38				
		6	28				
		8	40				
		11	23				
		9	28				
		12	23		1		
		10	27	18800			
		13	20				
	2	14	55	271	11		
		15	34			1	
0	85	16	23			- (
7	38	17	24		, ULL	,	N
l,		18	37				
	HE	19	64	TITLE	\$ 8	1	
_	A >	20	17	0	2 0		
	3	21	74	266	16		
	3	22 E	19	RF 1	10	/	
		23	27				
	7	24	65				
		25	60				
		26	81				
	4	27	26	269	13		
	+	28	28	209	13		
		29	42				
		30	32				

c) Menghitung *Line Efficiency* (LE)

Perhitungan *Line Efficiency* (LE) sebagai berikut :

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(4)(282)} x 100\%$
= $\frac{1088}{(4)(282)} x 100\%$
= $96,5\%$

d) Menghitung Smoothes Index (SI)

Perhitungan SI (Smoothes Index) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(0^2 + 11^2 + 16^2 + 13^2)}$
= 23,4

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut :

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(4 \times 282) - 1088}{(4 \times 282)} \times 100\%$

13) Percobaan waktu siklus 370 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal

Berikut adalah mehitung stasiun minimal:

Stasiun kerja minimal
$$= \frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+32)}{370}$$

$$= \frac{1088}{370}$$

$$= 2.9$$

$$= 3 \text{ stasiun}$$

- b) Penyusunan stasiun kerja
 Penyusunan stasiun kerja dapat dilihat pada Tabel 4.17.
- c) Menghitung *Line* Efficiency (LE)

 Perhitungan *Line* Efficiency (LE) sebagai berikut:

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

= $\frac{(18+17+29.....+42+32)}{(3)(370)} \times 100\%$
= $\frac{1088}{(3)(370)} \times 100\%$
= $98,02\%$

d) Menghitung *Smoothes Index* (SI)

Perhitungan SI (*Smoothes Index*) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(10^2 + 3^2 + 9^2)}$
= 13,78

Tabel 4.17 RPW Percobaan Waktu Siklus 370 Detik

	Stasiun	Elemen	Ti	Waktu	Idle	
	Kerja	Kerja	11	Stasiun	iaie	
		1	18			
		3	17			
		2	29			
		4	28			
		5	61			
	1	7	38	260	10	
	1	6	28	360	10	
		8	40			
		11	_23			
		9	28			
	_ (12	23			
		10	27			
		13	20			
17		_ 14	55	HA		1
7	() c	15	34	4	H	
	O V	16	23	₹ ?		
	70	17	24	1		
	2	18	37	367	3	
	3 2	19	64		2 8	
-	日ろ	20	17			
70	A.	21	74	Ters.		T
	E.	22	19	S		
		23	27			/
		24//	65			
		25	60			
	2	26	81	261	0	
	3	27	26	361	9	
	l	28	28			
		20				
		29	42			

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut :

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

$$= \frac{(3\times367) - 1088}{(3\times367)} \times 100\%$$
$$= 1,181\%$$

14) Percobaan waktu siklus 553 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal

Berikut adalah mehitung stasiun minimal:

Stasiun kerja minimal
$$= \frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+32)}{553}$$

$$= \frac{1088}{553}$$

$$= 1,978$$

$$= 2 \text{ stasiun}$$

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.18.

c) Menghitung Line Efficiency (LE)

Perhitungan Line Efficiency (LE) sebagai berikut:

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(2)(553)} x 100\%$
= $\frac{1088}{(2)(553)} x 100\%$
= $98,37\%$

Tabel 4.18 RPW Percobaan Waktu Siklus 553 Detik

	Stasiun	Elemen	Ti	Waktu	Idle	
	Kerja	Kerja	11	Stasiun	Tate	
		1	18			
		3	17			
		2	29			
		4	28			
		5	61			
		7	38			
		6	28			
		8	40			
	1	11	23	553	0	
	1	9	28	333	U	
	1	12	23			
	M	10	27		1	
		13	20	and		
		14	55	HA C		
	W c	15	34	10/	d	
	N.F	16	23	* >		77
	36	17	24	清大了		
	3 1	18	37		= 15	
		19	64			
	日言	20///	S17\			-
4	B	21	74	1.	X	1
	B	22	19	8 × ×	D.	
		23	27	· Carry		
	2	24	65	535	18	
	2	25	60	333	10	
		26	81			
		27	26			
		28	28			
		29	42			
		30	32			

d) Menghitung Smoothes *Index* (SI) perhitungan SI (*Smoothes Index*) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(0^2 + 18^2)}$
= 18

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut:

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(2 \times 553) - 1088}{(2 \times 553)} \times 100\%$
= 1,627%

15) Percobaan waktu siklus 661 detik

Berikut adalah perhitungan yang dilakukan dengan metode RPW:

a) Menghitung stasiun kerja minimal

Berikut adalah mehitung stasiun minimal:

Stasiun kerja minimal
$$= \frac{\sum_{i=1}^{N} ti}{WSi}$$

$$=\frac{(18+17+29.....+42+32)}{661}$$

$$=\frac{1088}{661}$$

$$= 1,65$$

= 2 stasiun

b) Penyusunan stasiun kerja

Penyusunan stasiun kerja dapat dilihat pada Tabel 4.19.

	Stasiun	Elemen	Ti	Waktu	Idle	
	Kerja	Kerja		Stasiun	Tute	
		1	18			
		3	17			
		2	29			
		4	28			
		5	61			
		7	38			
		6	28			
		8	40			
		11	23			
	1	9	28	624	27	
	1	12	23	634	27	
		1077	27	Tool		
		13	20	\sim		
		14	55	HO, C	à	
	N. E	15	34	* 71	8	
	85.	16	23			
	3 6	17	24			
	3 4	18	37		7 8	
	日言	19///	64		· 8	
4	A?	20	17	J. A	X	
	B	21	74	\ 3	D.	
		22	19			
		23	27			
		24	65			
	2	25	60	454	207	
	2	26	81	454	207	
		27	26			
		28	28			
		29	42			
		30	32			
	Sumber	: Data ya	ng D	iolah (20	19)	ı

Tabel 4.19 RPW Percobaan Waktu Siklus 661 Detik

c) Menghitung Line Efficiency (LE)

Perhitungan Line Efficiency (LE) sebagai berikut :

LE
$$=\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

$$= \frac{(18+17+29.....+42+32)}{(2)(661)} \times 100\%$$
$$= \frac{1088}{(2)(661)} \times 100\%$$
$$= 82,3\%$$

d) Menghitung *Smoothes Index* (SI) perhitungan SI (*Smoothes Index*) sebagai berikut :

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(27^2 + 207^2)}$
= 209

e) Menghitung Balance Delay (D)

Perhitungan Balance Delay sebagai berikut:

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(2 \times 634) - 1088}{(2 \times 634)} \times 100\%$
= 17.7%

d. Rangkuman hasil dari percobaan RPW

Setelah melakukan beberapa kali percobaan dengan waktu siklus yang berbeda-beda, berikut adalah perbandingan efisiensi yang akan disajikan pada Tabel 4.20. Perbandingan efisiensi yang ditunjukan pada Tabel 4.20 menjabarkan hasil perhitungan keseimbangan lintasan dengan metode RPW yang menunjukan hasil yang paling baik adalah dengan menggunakan waktu siklus 553 detik dan untuk memahami lebih lanjut terhadap elemen kerja pada masing-masing stasiun dapat dilihat pada Gambar 4.4.

Tabel 4.20 Perbandingan Perbandingan Hasil Dari RPW

No	Waktu	Jumlah	Line	Smoothes	Balance
NO	Siklus	Stasiun	Efficiency	Index	Delay
1	81 detik	17	79,1%	93,69	20,99%
2	92 detik	15	78,84%	91,64	21,16%
3	99 detik	13	84,5%	84,8	15,5%
4	120 detik	12	75,6%	126	24,4%
5	125 detik	11	79,1%	123	20,9%
6	130 detik	10	83,7%	80,5	14,3%
7	150 detik	9	80,6%	109	14,9%
8	160 detik	8	85%	99,9	14,5%
9	191 detik	7	81,4%	166	18,6%
10	210 detik	6	86,3%	94,8	12%
11	250 detik	(5)	87%	94,9	13%
12	282 detik	4	96,5%	23,4	3,55%
13	370 detik	3	98,02%	13,78	1,181%
14	553 detik	2	98,37%	18	1,627%
15	661 detik	2 2	82,3%	208,8	17,7%

			11	
Stasiun Kerja	El	emen	Kerj	a
	1	6	11	16
	2	7	12	17
1	3	8	13	18
	4	9	14	19
	5	10	15	20

Stasiun kerja	Elemen Kerja			
	21	26		
	22	27		
2	23	28		
	24	29		
	25	30		

Gambar 4.5 Penempatan Elemen Kerja Pada Stasiun Metode RPW Sumber : Data yang Diolah

Tabel 4.21. Matriks P dan Matriks F

Elemen			Ti	Task		
Kerja	Matr	iks P	11	Task	Matrik	s F
1	0	0	18	1	2	0
2	1	0	29	2	5	0
3	0	0	17	3	4	0
4	3	0	28	4	5	0
5	2	4	61	5	6	0
6	5	0	28	6	8	0
7	0	0	38	7	8	0
8	6	7	40	8	9	0
9	8	0	28	9	10	0
10	9	0	27	10	14	0
11	0	0	23	11	12	0
12	11	0	_23_	12	13	0
13	12	0	20	13	14	0
14	10	13	55	14	15	0
15	14	0	34	15	16	0
16	15	0	23	16	17	0
17	16	0	24	17	_18	0
18	17	0	37	18	19	0
19	18	0 //	64	19	20	0
20	19	0	17	20	21	0
21	20	0	174	21	22	0
22	21	0	19	22	23	0
23	22	07	727	23	24	0
24	23	0	65	24	25	0
25	24	0	60	25	26	0
26	25	0	81	26	27	0
27	26	0	26	27	28	0
28	27	0	28	28	29	0
29	28	0	42	29	30	0
30	29	0	32	30	0	0

3. Perhitungan dengan metode Moodie Young

Perhitungan dengan metode Moodie Young terdiri dari tahap satu dan tahap dua. Tahap satu adalah melakukan pengelompokan stasiun kerja berdasarkan matriks hubungan antar Elemen Kerja. Tahap kedua adalah

revisi dari hasil yang diperoleh oleh tahap satu. Berikut adalah langkahlangkah metode Moodie Young :

a. Membuat tabel dengan matriks P dan matriks F

Membuat tabel dengan matriks P dan matriks F berdasarkan *precedence diagram* pada Gambar 4.3. Matriks P menjelaskan untuk pengerjaan terdahulu setiap elemen sedangkan untuk matrik F menjelaskan pengerjaan pengikut untuk masing-masing elemen untuk setiap prosedur penugasan. matriks P dan matriks F dapat dilihat pada Tabel 4.21.

- b. Penyusunan stasiun kerja menggunakan metode Moodie Young Waktu siklus yang telah ditentukan adalah 81 detik sampai 661 detik. maka untuk mendapatkan hasil yang maksimal akan dilakukan ujicoba hingga mendapatkan hasil yang paling baik. Berikut adalah rangkaian ujicoba dalam mencari hasil yang paling optimal:
 - 1) Percobaan waktu siklus 81 detik

 Berikut langkah-langkah perhitungan Moodie Young:
 - a) Menghitung jumlah stasiun minimal

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$

= $\frac{(18+17+29.....+42+32)}{81}$
= $\frac{1088}{81}$
= $13,432$
= 14 stasiun

- b) Fase satu menyusun stasiun kerjaSusunan stasiun kerja dapat dilihat pada Tabel 4.22.
- c) Menghitung *Line Efficiency*Berikut adalah perhitungan *Line Efficiency* (LE):

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

$$= \frac{(18+17+29.....+42+32)}{(18)(81)} x 100\%$$
$$= \frac{1088}{(18)(81)} x 100\%$$
$$= 74,62\%$$

Tabel 4.22. Stasiun Kerja Moodie Young Waktu Siklus 81 Detik Fase Satu

Kerja Kerja Stasiun 1 7 38 40 11 23 66 15 13 20 15 3 1 18 47 34 4 3 17 45 36 5 5 61 61 20 6 6 28 28 53 7 9 28 55 26 8 14 55 55 26 9 16 23 81 0 17 24 0 17 0 12 21 74 74 74 7 13 22 19 46 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0	Stasiun	Elemen	Ti	Waktu	Idle
1 8 40 78 3 11 23 66 15 13 20 34 2 29 47 34 4 3 17 45 36 5 5 61 61 20 6 6 28 28 53 7 9 28 55 26 8 14 55 55 26 8 14 55 55 26 9 16 23 81 0 17 24 81 0 10 18 37 37 44 11 20 17 0 12 21 74 74 7 13 23 27 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 26 54 27	Kerja	Kerja		Stasiun	Tute
8 40 11 23 12 23 13 20 13 20 13 20 13 20 2 29 4 3 17 45 36 36 5 5 6 6 6 6 28 28 28 28 33 37 4 4 28 28 28 28 55 55 26 28 28 28 55 55 26 34 8 14 55 55 26 15 34 9 16 23 81 0 0 12 17 13 23 27 26 16 26 81 81 0 0 12 14 24 65 65 65 16 26 81 81 0 27	1		38	78	3
2 12 23 66 15 13 20 34 4 2 29 47 34 4 3 17 45 36 5 5 61 61 20 6 6 28 28 53 7 9 28 55 26 8 14 55 55 26 9 16 23 81 0 17 24 81 0 10 18 37 37 44 11 19 64 81 0 12 21 74 74 7 13 23 27 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 26 54 27	1			70	3
13 20 1 18 2 29 4 3 4 28 5 5 6 6 6 6 9 28 10 27 8 14 55 55 26 15 34 9 16 15 34 9 16 17 24 10 18 37 37 44 11 19 64 81 10 17 10 18 37 37 44 44 11 20 17 74 14 24 65 65 16 26 81 81 0 12 16 26 81 81 10 27 26 54 27					
3 1 18 47 34 4 3 17 45 36 5 5 61 61 20 6 6 28 28 53 7 10 27 55 26 8 14 55 55 26 9 16 23 81 0 17 24 81 0 10 18 37 37 44 11 20 17 0 12 21 74 74 7 13 23 27 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 26 54 27	2		23	66	15
3 2 29 47 34 4 3 17 45 36 5 5 61 61 20 6 6 28 28 53 7 9 28 28 55 10 27 55 26 8 14 55 55 26 9 16 23 81 0 17 24 81 0 10 18 37 37 44 11 19 64 81 0 12 21 74 74 7 13 23 27 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 26 54 27	9	13	20		
2 29 3 17 45 36 5 5 61 61 20 6 6 28 28 53 7 10 27 55 26 8 14 55 55 26 9 16 23 81 0 17 24 0 17 44 10 18 37 37 44 11 19 64 81 0 12 21 74 74 7 13 23 27 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 26 54 27	2			17	1 21
4 28 45 36 5 5 61 61 20 6 6 28 28 53 7 9 28 55 26 8 14 55 55 26 9 16 23 81 0 17 24 81 0 10 18 37 37 44 11 19 64 81 0 12 21 74 74 7 13 22 19 46 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 26 54 27	3	2	29		34
5 5 61 61 20 6 6 28 28 53 7 9 28 55 26 8 14 55 55 26 9 16 23 81 0 17 24 0 17 24 10 18 37 37 44 11 19 64 81 0 12 21 74 74 7 13 22 19 46 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 26 54 27	1		17	1, 15	26
6 6 28 28 53 7 9 28 55 26 8 14 55 55 26 15 34 35 37 34 34 37 37 37 37 34 34 37 3		4	28	7043	30
7 9 28 55 26 8 14 55 55 26 9 16 23 81 0 17 24 0 17 24 10 18 37 37 44 11 19 64 81 0 12 21 74 74 7 13 22 19 46 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 27 26 54 27	5	5	61	61	20
7 10 27 55 26 8 14 55 55 26 9 16 23 81 0 17 24 0 17 24 10 18 37 37 44 11 19 64 81 0 12 21 74 74 7 13 22 19 46 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 27 26 54 27	6	6	28	28	53
8 14 55 55 26 15 34 0 16 23 81 0 17 24 0 10 18 37 37 44 11 19 64 81 0 12 21 74 74 7 13 22 19 46 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 27 26 54 27	3,8	9	28	相 _{EE}	26
8 14 55 55 26 15 34 34 34 34 34 9 16 23 81 0 17 24 37 37 44 11 19 64 81 0 12 21 74 74 7 13 22 19 46 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 27 26 54 27) T	10	27	33	26
9 16 23 81 0 17 24 0 10 18 37 37 44 11 19 64 81 0 12 21 74 74 7 13 22 19 46 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 27 26 54 27	8	14		\$ 55	26
17 24 10 18 37 37 44 11 19 64 81 0 12 21 74 74 7 13 22 19 46 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 27 26 54 27	3 %	15	34		
10 18 37 37 44 11 19 64 81 0 12 21 74 74 7 13 22 19 46 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 27 26 54 27	9	16	23	81	0
11 19 64 81 0 12 21 74 74 7 13 22 19 46 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 27 26 54 27		17	24	. (\mathcal{Y}
11 20 17 0 12 21 74 74 7 13 22 19 46 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 27 26 54 27	10	18	37	37	44
12 21 74 74 7 13 22 19 46 35 23 27 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0	11	19	64	81	
13 22 19 46 35 23 27 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 27 26 54 27					U
13 23 27 35 14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 27 26 54 27	12	21	74	74	7
14 24 65 65 16 15 25 60 60 21 16 26 81 81 0 17 27 26 54 27	12	22	19	46	25
15 25 60 60 21 16 26 81 81 0 27 26 54 27	13	23	27		33
16 26 81 81 0 17 27 26 54 27	14	24	65	65	16
17 27 26 54 27	15	25	60	60	21
	16	26	81	81	0
28 28 34 27	17	27	26	5.1	27
	1/	28	28	34	21
19 29 42 74 7	10	29	42	7.4	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	30	32	/4	/

d) Menghitung Smoothes Index

Berikut adalah perhitungan Smoothes Index (SI):

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(3^2 + 15^2 + 34^2 + \dots + 27^2 + 7^2)}$
= 109,23

e) Menghitung Balance Delay

Berikut adalah perhitungan Balance Delay (D)

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(18 \times 81) - 1088}{(18 \times 81)} \times 100\%$
= 25,37%

f) Fase dua

Berikut adalah tahapan-tahapan pada fase dua:

(1) Menghitung Goal

$$Goal = \frac{waktu siklus max - waktu siklus min}{2}$$

$$= \frac{81-28}{2}$$

$$= 26,5 \text{ detik}$$

(2) Perpindahan

Pemindahan tidak dilakukan terhadap elemen kerja dari stasiun maksimal ke stasiun minimal. Hal ini dikarenakan tidak ada hubungan elemen dikedua stasiun berdasarkan precedence diagram.

g) Hasil akhir percobaan

Tidak terjadinya perubahan pada hasil perhitungan pada fase pertama, hal ini dikarenakan tidak adanya perpindahaan antara stasiun maksimal dan stasiun minimal.

2) Percobaan waktu siklus 90 detik

Berikut langkah-langkah perhitungan Moodie Young:

a) Menghitung jumlah stasiun minimal

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+32)}{90}$$

$$= 12,89$$

$$= 13 \text{ stasiun}$$

- b) Fase satu menyusun stasiun kerjaSusunan stasiun kerja dapat dilihat pada Tabel 4.23.
- c) Menghitung *Line Efficiency*Berikut adalah perhitungan *Line Efficiency* (LE):

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(17)(90)} x 100\%$
= $\frac{1088}{(17)(90)} x 100\%$
= 71,11%

d) Menghitung Smoothes Index

Berikut adalah perhitungan Smoothes Index (SI):

SI =
$$\sqrt{\sum_{i=1}^{K} (STi max - STi)^2}$$

= $\sqrt{(12^2 + 24^2 + 43^2 + \dots + 36^2 + 16^2)}$
= 126,38

e) Menghitung Balance Delay

Berikut adalah perhitungan *Balance Delay* (D)

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(17 \times 89) - 1088}{(17 \times 89)} \times 100\%$
= 25,37%

Tabel 4.23. Stasiun Kerja Moodie Young Waktu Siklus 90 Detik Fase Satu

Stasiun Kerja	Elemen Kerja	Ti	Waktu Stasiun	Idle
1	7	38	70	12
1	8	40	78	12
	11	23		
2	12	23	66	24
	13	20		
3	1	18	47	43
3	2	29	47	43
4	3	17	45	15
4	4	28	43	45
5	5	61	61	29
6	6	28	28	62
7	9	_28_	Dec .	25
	10	27	55	35
	14	55	700	3.
8	15	34	89	β_{1}
88	16	23		JO.
9 =	17	24	84	6
Z S	18	37	₩ ,	
8, 2	19 //	64	70 01 S	2
10	20	17	81	9
110	21	74	74	16
10	22	19	-02	11
12	23	727	46	44
13	24	65	65	25
14	25	60	60	30
15	26	81	81	9
16	27	26	51	26
16	28	28	54	36
17	29	42	7.4	1.0
17	30	32	74	16

f) Fase dua

Berikut adalah tahapan-tahapan pada fase dua:

(1) Menghitung Goal

Goal =
$$\frac{waktu \, siklus \, max - waktu \, siklus \, min}{2}$$
$$= \frac{89-28}{2}$$
$$= 45.5 \, detik$$

(2) Perpindahan

Pemindahan tidak dilakukan terhadap elemen kerja dari stasiun maksimal ke stasiun minimal. Hal ini dikarenakan tidak ada hubungan elemen dikedua stasiun berdasarkan *precedence diagram*.

g) Hasil akhir

Tidak terjadinya perubahan pada hasil perhitungan pada fase pertama, hal ini dikarenakan tidak adanya perpindahaan antara stasiun maksimal dan stasiun minimal.

3) Percobaan waktu siklus 100 detik

Berikut langkah-langkah perhitungan Moodie Young:

a) Menghitung jumlah stasiun minimal

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+32)}{100}$$

$$= \frac{1088}{100}$$

$$= 10,88$$

$$= 11 \text{ stasiun}$$

b) Fase satu menyusun stasiun kerja

Susunan stasiun kerja dapat dilihat pada Tabel 4.24.

c) Menghitung Line Efficiency

Berikut adalah perhitungan Line Efficiency (LE):

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

$$= \frac{(18+17+29.....+42+32)}{(16)(100)} x 100\%$$
$$= \frac{1088}{(16)(100)} x 100\%$$
$$= 68\%$$

Tabel 4.24. Stasiun Kerja Moodie Young Waktu Siklus 100 Detik Fase Satu

Stasiun	Elemen	T.	Waktu	T 11
Kerja	Kerja	Ti	Stasiun	Idle
1	7	38	78	22
1	8	40	70	22
	11	23		
2	12	23	66	34
1	13	20		4
3	1,000	18	47	53
	2	29		33
400	3	17	45	55
	5 4	28	T 3	83
5 5	5	61	89	11
8 2	6	28	月	
6	9	28	55	45
3	10	27	₩ 33 ≥	
7	14	55	89	M
B	15	34	100.09	
	16	23	3	<i>y</i>
8	17	24	84	16
	18	437		
9	19	64	01	10
9	20	17	- 81	19
10	21	74	74	26
1.1	22	19	4.6	<i>5.</i> 4
11	23	27	46	54
12	24	65	65	35
13	25	60	60	40
14	26	81	81	19
	27	26		
15	28	28	96	4
	29	42	1	
16	30	32	32	68
Sum	her · Data	vana D	hiolah (201	10)

d) Menghitung Smoothes Index

Berikut adalah perhitungan Smoothes Index (SI):

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(78^2 + 66^2 + 53^2 + \dots + 4^2 + 68^2)}$
= 147,57

e) Menghitung Balance Delay

Berikut adalah perhitungan Balance Delay (D)

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(16 \times 96) - 1088}{(16 \times 96)} \times 100\%$
= 29,167%

f) Fase dua

Berikut adalah tahapan-tahapan pada fase dua:

(1) Menghitung Goal

Goal =
$$\frac{waktu siklus max - waktu siklus min}{2}$$

$$= \frac{100-32}{2}$$

$$= 32 \text{ detik}$$

(2) Perpindahan

Pemindahan tidak dilakukan terhadap elemen kerja dari stasiun maksimal ke stasiun minimal. Hal ini dikarenakan waktu elemen kerja pada stasiun kerja maksimal tidak sesuai dengan nilai *Goal*.

g) Hasil akhir percobaan

Tidak terjadinya perubahan pada hasil perhitungan pada fase pertama, hal ini dikarenakan tidak adanya perpindahaan antara stasiun maksimal dan stasiun minimal.

- 4) Percobaan waktu siklus 106 detikBerikut langkah-langkah perhitungan Moodie Young:
 - a) Menghitung jumlah stasiun minimal

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$
=
$$\frac{(18+17+29.....+42+32)}{106}$$
=
$$\frac{1088}{106}$$
=
$$10,26$$
=
$$11 \text{ stasiun}$$

- b) Fase satu menyusun stasiun kerja Susunan stasiun kerja dapat dilihat pada Tabel 4.25.
- c) Menghitung Line Efficiency

Berikut adalah perhitungan Line Efficiency (LE):

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(15)(106)} x 100\%$
= $\frac{1088}{(15)(106)} x 100\%$
= $68,43\%$

d) Menghitung Smoothes Index

Berikut adalah perhitungan Smoothes Index (SI):

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(106^2 + 66^2 + 47^2 + \dots + 10^2 + 74^2)}$
= 161,9

e) Menghitung *Balance Delay*Berikut adalah perhitungan *Balance Delay* (D)

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(15 \times 106) - 1088}{(15 \times 106)} \times 100\%$
= 31,57%

Tabel 4.25. Stasiun Kerja Moodie Young Waktu Siklus 106 Detik Fase Satu

Stasiun	Elemen	Ti	Waktu	Idle
Kerja	Kerja	11	Stasiun	Tate
	7	38		
1	8	40	106	0
	9	28		
	11	23		3
2	12	23	66	40
	13	20		
3.0	JLA	18	4/47	59
	5 2	29	7	33
2	3	¹¹¹ 17@		10
4 9	4	28	106	0
1 73	5	61		
5	6	28	28	78
6	10	27	82	24
5	14	55	02	(Z+
	15	34)	Y .
7	16	23	81	25
	17-4	24		
8	18	37	101	5
o	19	64	101	3
9	20	17	91	15
9	21	74	91	13
10	22	19	46	60
10	23	27	40	00
11	24	65	65	41
12	25	60	60	46
13	26	81	81	25
	27	26		
14	28	28	96	10
	29	42		
15	30	32	32	74

f) Fase dua

Berikut adalah tahapan-tahapan pada fase dua:

(1) Menghitung Goal

Goal =
$$\frac{waktu \, siklus \, max - waktu \, siklus \, min}{2}$$
$$= \frac{106 - 32}{2}$$
$$= 39 \, detik$$

(2) Perpindahan

Pemindahan tidak dilakukan terhadap elemen kerja dari stasiun maksimal ke stasiun minimal. Hal ini dikarenakan waktu elemen kerja pada stasiun kerja maksimal tidak sesuai dengan nilai *Goal*.

g) Hasil akhir percobaan

Tidak terjadinya perubahan pada hasil perhitungan pada fase pertama, hal ini dikarenakan tidak adanya perpindahaan antara stasiun maksimal dan stasiun minimal.

5) Percobaan waktu siklus 111 detik

Berikut langkah-langkah perhitungan Moodie Young:

a) Menghitung jumlah stasiun minimal

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$
=
$$\frac{(18+17+29.....+42+32)}{111}$$
=
$$\frac{1088}{111}$$
= 9,802
= 10 stasiun

b) Fase satu menyusun stasiun kerja

Susunan stasiun kerja dapat dilihat pada Tabel 4.26.

Tabel 4.26. Stasiun Kerja Moodie Young Waktu Siklus 111 Detik Fase satu

Stasiun Kerja	Elemen Kerja	Ti	Waktu Stasiun	Idle	
	7	38	2 1002 2012		
1	8	40	106	5	
	9	28			
	11	23			
2	12	23	66	45	
	13	20			
	1	18			
3	2	29	108	3	
	5	61			
4	3	17	45	66	
4	4	28	43	66	
5	6	L28 C	28	83	
6	10	27	82	29	
	14	55	70, 4		
Q.	15	34	* Y	8	
7 8	16	23	81	30	
BR	17	24			
8,5	18	37	101	10	
8	19	// 64	101	10	
B.	20	17	01	20	
9	21	74	91	20	
	22	19			
10	23	27	111	0	
	24	65			
11	25	60	60	51	
12	26	81	107	1	
12	27	26	107	4	
	28	28			
13	29	42	102	9	
	30	32		-	

c) Menghitung Line Efficiency

Berikut adalah perhitungan Line Efficiency (LE):

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

$$= \frac{(18+17+29.....+42+32)}{(13)(111)} \times 100\%$$

$$= \frac{1088}{(13)(111)} \times 100\%$$

$$= 75.4\%$$

d) Menghitung Smoothes Index

Berikut adalah perhitungan Smoothes Index (SI):

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(106^2 + 45^2 + 3^2 + \dots + 9^2 + 9^2)}$
= 135,1

e) Menghitung Balance Delay

Berikut adalah perhitungan Balance Delay (D)

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(13 \times 111) - 1088}{(13 \times 111)} \times 100\%$
= 24,6%

f) Fase dua

Berikut adalah tahapan-tahapan pada fase dua:

(1) Menghitung Goal

$$Goal = \frac{waktu siklus max - waktu siklus min}{2}$$

$$= \frac{111-28}{2}$$

$$= 41.5 \text{ detik}$$

(2) Perpindahan

Pemindahan tidak dilakukan terhadap elemen kerja dari stasiun maksimal ke stasiun minimal. Hal ini dikarenakan tidak ada hubungan elemen dikedua stasiun berdasarkan precedence diagram.

g) Hasil akhir percobaan

Tidak terjadinya perubahan pada hasil perhitungan pada fase pertama, hal ini dikarenakan tidak terjadinya perpindahaan antara stasiun maksimal dan stasiun minimal.

6) Percobaan waktu siklus 136 detik

Berikut langkah-langkah perhitungan Moodie Young:

a) Menghitung jumlah stasiun minimal

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$

= $\frac{(18+17+29.....+42+32)}{136}$
= $\frac{1088}{136}$
= $\frac{8 \text{ stasiun}}{136}$

b) Fase satu menyusun stasiun kerja

Susunan stasiun kerja dapat dilihat pada Tabel 4.27.

c) Menghitung Line Efficiency

Berikut adalah perhitungan Line Efficiency (LE):

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(10)(136)} x 100\%$
= $\frac{1088}{(10)(136)} x 100\%$
= 80%

d) Menghitung Smoothes Index

Berikut adalah perhitungan Smoothes Index (SI):

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(3^2 + 15^2 + 136^2 + \dots + 29^2 + 34^2)}$
= 119

Tabel 4.27. Stasiun Kerja Moodie Young Waktu Siklus 136 Detik Fase Satu

Stasiun Kerja	Elemen Kerja	Ti	Waktu Stasiun	Idle	
	7	38			
1	8	40	122	2	
1	9	28	133	3	
	10	27			
	11	23			
2	12	23	121	15	
2	13	20	121	13	
	14	55			
	1	18			
2	2	29	126	0	
3	5	61	136	0	
	6	28			
4	3	17	45	01	
4	4	28	45	91	
	15	34	* 4	8	
25	16	23	110	18	
5 2	17	24	118		
	18	37	₩,		
BZ	19	// 64	710 01 S	. 22	
6	20	17	81	55	
(B)	21	74			
7	22	19	120	16	
	23	727			
0	24	65	105	11	
8	25	60	125	11	
0	26	81	107	20	
9	27	26	107	29	
	28	28			
10	29	42	102	34	
	30	32			

e) Menghitung Balance Delay

Berikut adalah perhitungan Balance Delay (D)

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

$$= \frac{(10 \times 136) - 1088}{(10 \times 136)} \times 100\%$$
$$= 20\%$$

f) Fase dua

Berikut adalah tahapan-tahapan pada fase dua:

(1) Menghitung Goal

$$Goal = \frac{waktu siklus max - waktu siklus min}{2}$$

$$= \frac{136-45}{2}$$

$$= 45,5 \text{ detik}$$

(2) Perpindahan

Pemindahan tidak dilakukan terhadap elemen kerja dari stasiun maksimal ke stasiun minimal. Hal ini dikarenakan waktu elemen kerja pada stasiun kerja maksimal tidak sesuai dengan nilai *Goal*.

g) Hasil akhir percobaan

Tidak terjadinya perubahan pada hasil perhitungan pada fase pertama, hal ini dikarenakan tidak adanya perpindahaan antara stasiun maksimal dan stasiun minimal.

7) Percobaan waktu siklus 156 detik

Berikut langkah-langkah perhitungan Moodie Young:

a) Menghitung jumlah stasiun minimal

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$
=
$$\frac{(18+17+29.....+42+32)}{156}$$
=
$$\frac{1088}{156}$$
= 7,02
= 8 stasiun

b) Fase satu menyusun stasiun kerja Susunan stasiun kerja dapat dilihat pada Tabel 4.28.

Tabel 4.28. Stasiun Kerja Moodie Young Waktu Siklus 156 Detik Fase Satu

Stasiun	Elemen	Ti	Waktu	Idle	
Kerja	Kerja	11	Stasiun	Tuic	
	7	38			
1	8	40	133	23	
1	9	28	133	23	
	10	27			
	11	23			
	12	23			
2	13	20	155	0	
	14	55			
	15	34		7	
	MILLIN	18	W.		
20	2\A	29	4126	19	
3	6 5	61	136		
8 4	6	28	· ·	18	
2 8	3	17	意って	110	
4 🖺	4	28	45	110	
83	16	23		7	
5	17	24	148		
B	18	37	3000		
16	19	64	D 4		
	20	17			
6	21	74	137	18	
	22	19			
	23	27			
_	24	65	125	20	
7	25	60	125	30	
	26	81			
8	27	26	135	20	
	28	28			
	29	42	_,	0.1	
9	30	32	74	81	

Sumber: Data yang Diolah (2019)

c) Menghitung Line Efficiency

Berikut adalah perhitungan Line Efficiency (LE):

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(9)(155)} x 100\%$
= $\frac{1088}{(9)(155)} x 100\%$
= 78%

d) Menghitung Smoothes Index

Berikut adalah perhitungan Smoothes Index (SI):

SI =
$$\sqrt{\sum_{i=1}^{K} (STi max - STi)^2}$$

= $\sqrt{(23^2 + 0^2 + 19^2 + \dots + 20^2 + 81^2)}$
= 146

e) Menghitung Balance Delay

Berikut adalah perhitungan Balance Delay (D)

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(9 \times 155) - 1088}{(9 \times 155)} \times 100\%$
= 22%

f) Fase dua

Berikut adalah tahapan-tahapan pada fase dua:

(1) Menghitung Goal

$$Goal = \frac{waktu siklus max - waktu siklus min}{2}$$
$$= \frac{155 - 45}{2}$$
$$= 55 \text{ detik}$$

(2) Perpindahan

Pemindahan tidak dilakukan terhadap elemen kerja dari stasiun maksimal ke stasiun minimal. Hal ini dikarenakan tidak ada hubungan elemen dikedua stasiun berdasarkan precedence diagram.

h) Hasil akhir percobaan

Tidak terjadinya perubahan pada hasil perhitungan pada fase pertama, hal ini dikarenakan tidak adanya perpindahaan antara stasiun maksimal dan stasiun minimal.

8) Percobaan waktu siklus 199 detik

Berikut langkah-langkah perhitungan Moodie Young:

a) Menghitung jumlah stasiun minimal

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$

= $\frac{(18+17+29.....+42+32)}{199}$

= $\frac{1088}{199}$

= $5,47$

= 6 stasiun

b) Fase satu menyusun stasiun kerja

Susunan stasiun kerja dapat dilihat pada Tabel 4.29.

c) Menghitung Line Efficiency

Berikut adalah perhitungan *Line Efficiency* (LE):

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(8)(199)} x 100\%$
= $\frac{1088}{(8)(199)} x 100\%$
= 68.3%

d) Menghitung Smoothes Index

Berikut adalah perhitungan Smoothes Index (SI):

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \, max - STi)^2}$$

= $\sqrt{(11^2 + 133^2 + 63^2 + \dots + 4^2 + 125^2)}$
= 248

Tabel 4.29. Stasiun Kerja Moodie Young Waktu Siklus 199 Detik Fase Satu

Stasiun	Elemen	Ti	Waktu	Idle	
Kerja	Kerja	11	Stasiun	Tate	
	7	38			
	8	40			
1	9	28	188	11	
	10	27			
	14	55			
	11	23		1	
2	12	123/	66	133	
	13	20			
	1	18	70, 4	7	
3	2	29	126	62	
2 5	5 111111	61	136	63	
B &	6	28	1		
4 %	3	17	45	154	
	4	//28	43	134	
B	15	34	3.	SQX)	
	16	23	(
_	17	24	199	0	
5	18	737	199	0	
	19	64			
	20	17			
	21	74			
6	22	19	105	1.4	
6	23	27	185	14	
	24	65			
	25	60			
7	26	81	105	<u>_</u>	
	27	26	195	4	
	28	28			
0	29	42	7.4	105	
8	30	32	74	125	

e) Menghitung Balance Delay

Berikut adalah perhitungan Balance Delay (D)

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(8 \times 199) - 1088}{(8 \times 199)} \times 100\%$
= 31,7%

f) Fase dua

Berikut adalah tahapan-tahapan pada fase dua:

(1) Menghitung Goal

$$Goal = \frac{waktu siklus max - waktu siklus min}{2}$$

$$= \frac{199-45}{2}$$

$$= 77 \text{ detik}$$

(2) Perpindahan

Pemindahan tidak dilakukan terhadap elemen kerja dari stasiun maksimal ke stasiun minimal. Hal ini dikarenakan tidak ada hubungan elemen dikedua stasiun berdasarkan precedence diagram.

g) Hasil akhir percobaan

Tidak terjadinya perubahan pada hasil perhitungan pada fase pertama, hal ini dikarenakan tidak adanya perpindahaan antara stasiun maksimal dan stasiun minimal.

9) Percobaan waktu siklus 239 detik

Berikut langkah-langkah perhitungan Moodie Young:

a) Menghitung jumlah stasiun minimal

Stasiun kerja minimal=
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$

$$= \frac{(18+17+29.....+42+32)}{239}$$

$$= \frac{1088}{239}$$

$$= 4,55$$

$$= 5 \text{ stasiun}$$

- b) Fase satu menyusun stasiun kerjaSusunan stasiun kerja dapat dilihat pada Tabel 4.30.
- c) Menghitung *Line Efficiency*Berikut adalah perhitungan *Line Efficiency* (LE):

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(7)(239)} x 100\%$
= $\frac{1088}{(7)(239)} x 100\%$
= 65%

d) Menghitung Smoothes Index

Berikut adalah perhitungan Smoothes Index (SI):

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(17^2 + 173^2 + 103^2 + \dots + 68^2 + 30^2)}$
= 290

e) Menghitung Balance Delay

Berikut adalah perhitungan Balance Delay (D)

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(7 \times 239) - 1088}{(7 \times 239)} \times 100\%$
= 43,1%

Tabel 4.30. Stasiun Kerja Moodie Young Waktu Siklus 239 Detik Fase Satu

	Stasiun	Elemen		Waktu		
	Kerja		Ti	Stasiun	Idle	
-	Kerja	Kerja 7	38	Stasiuii		
		8	40			
		9	28			
	1			222	17	
		10 14	27 55			
		15	34			
		11	23			
	2	12	23	66	173	
	2	13	20	00	173	
		13	18			
		2	29			
	3	5	61	136	103	
		6	28		1	
		3	17	200		
1	4	4 4	28	45	194	ĺ.
Ä		16	23	10/2 F	STORE	
	Q A	17	24	239		7
	5 2	18	37			٨
	3 5	19	64		577	
	B 2	20	17			1
>	83	21	74		· 8-	<
7	A.	22	19	J. J.		
	6	23/	27	171	68	
	0	24	65		08	
		25	60			
		26	81			
		27	26			
	7	28	28	209	30	
		29	42			
		30	32			
				. 1 1 (00)	10)	•

f) Fase dua

Berikut adalah tahapan-tahapan pada fase dua :

(1) Menghitung Goal

$$Goal = \frac{waktu\ siklus\ max - waktu\ siklus\ min}{2}$$

$$=\frac{239-45}{2}$$
$$=97 \text{ detik}$$

(2) Perpindahan

Pemindahan tidak dilakukan terhadap elemen kerja dari stasiun maksimal ke stasiun minimal. Hal ini dikarenakan tidak ada hubungan elemen dikedua stasiun berdasarkan *precedence diagram*.

h) Hasil akhir percobaan

Tidak terjadinya perubahan pada hasil perhitungan pada fase pertama, hal ini dikarenakan tidak adanya perpindahaan antara stasiun maksimal dan stasiun minimal.

10) Percobaan waktu siklus 306 detik

Berikut langkah-langkah perhitungan Moodie Young:

a) Menghitung jumlah stasiun minimal

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$

= $\frac{(18+17+29.....+42+32)}{306}$
= $\frac{1088}{306}$
= 3,56
= 4 stasiun

- b) Fase satu menyusun stasiun kerja
 - Susunan stasiun kerja dapat dilihat pada Tabel 4.31.
- c) Menghitung Line Efficiency

Berikut adalah perhitungan Line Efficiency (LE):

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(6)(306)} x 100\%$

$$=\frac{1088}{(6)(306)} \times 100\%$$
$$=59.3\%$$

d) Menghitung Smoothes Index

Berikut adalah perhitungan Smoothes Index (SI):

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(0^2 + 240^2 + 170^2 + 261^2 + 40^2 + 37^2)}$
= 397

e) Menghitung Balance Delay

Berikut adalah perhitungan Balance Delay (D)

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(6 \times 306) - 1088}{(6 \times 306)} \times 100\%$
= 40.7%

f) Fase dua

Berikut adalah tahapan-tahapan pada fase dua:

(1) Menghitung

Goal =
$$\frac{waktu \, siklus \, max - waktu \, siklus \, min}{2}$$
$$= \frac{306 - 45}{2}$$
$$= 131 \, detik$$

(2) Perpindahan

Pemindahan tidak dilakukan terhadap elemen kerja dari stasiun maksimal ke stasiun minimal. Hal ini dikarenakan tidak ada hubungan elemen dikedua stasiun berdasarkan precedence diagram.

Tabel 4.31. Stasiun Kerja Moodie Young Waktu Siklus 306 Detik Fase Satu

	Stasiun	Elemen	Ti	Waktu	Idle	
	Kerja	Kerja		Stasiun	Tute	
		7	38			
		8	40			
		9	28			
		10	27			
	1	14	55	306	0	
		15	34			
		16	23			
		17	24			
		18	37			
		11	23			
	2	12	23	66	240	
		13	L20 Z			
	3		18			
		2	29	126	170	
7		5	61	136	7,0	
	N S	6,000	28			
	4 4	3	17	45	261	
	S ⁴ ¥	4	28	1 43	201	
	BZ	19	// 64			
7	B:	20	17	J	N.	
	5	21	74	266	40	
1	3	22	19	266	40	
		23	27			
		24	65			
		25	60			
		26	81			
		27	26	260	27	
	6	28	28	269	37	
		29	42			
		30	32			

g) Hasil akhir percobaan

Tidak terjadinya perubahan pada hasil perhitungan pada fase pertama, hal ini dikarenakan tidak adanya perpindahaan antara stasiun maksimal dan stasiun minimal.

- 11) Percobaan waktu siklus 454 detikBerikut langkah-langkah perhitungan Moodie Young:
 - a) Menghitung jumlah stasiun minimal

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$

= $\frac{(18+17+29.....+42+32)}{454}$
= $\frac{1088}{454}$
= 2,4
= 3 stasiun

- b) Fase satu menyusun stasiun kerja Susunan stasiun kerja dapat dilihat pada Tabel 4.32.
- c) Menghitung *Line Efficiency*Berikut adalah perhitungan *Line Efficiency* (LE):

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} \times 100\%$$

= $\frac{(18+17+29.....+42+32)}{(5)(454)} \times 100\%$
= $\frac{1088}{(5)(454)} \times 100\%$
= 47,9%

d) Menghitung Smoothes Index

Berikut adalah perhitungan Smoothes Index (SI):

SI =
$$\sqrt{\sum_{i=1}^{K} (STi \ max - STi)^2}$$

= $\sqrt{(67^2 + 388^2 + 318^2 + 409^2 + 0^2)}$
= 651

e) Menghitung *Balance Delay*Berikut adalah perhitungan *Balance Delay* (D)

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(5 \times 454) - 1088}{(5 \times 454)} \times 100\%$
= $60,1\%$

Tabel 4.32. Stasiun Kerja Moodie Young Waktu Siklus 454 Detik Fase Satu

Stasiun	Elemen	Ti	Waktu	Idle
Kerja	Kerja		Stasiun	
	7	38		
	8	40		
	9	28		
	10	27		
	14	55		1
1	15	_34_	387	67
	16	23	4,	
	17	24	0	a \
N A	18	37	* * * * * * * * * * * * * * * * * * * *	
8 3	19	64	八十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	
N CK	20	17		= 8
8 5	11	23		
2 7	12	//23	66	388
B.	13	20	J. A	N.
B	1 1	18	(V
2	2°E	29	136	210
3	5/7	761	136	318
	6	28		
4	3	17	45	400
4	4	28	45	409
	21	74		
	22	19		
	23	27		
	24	65	=	
_	25	60		
5	26	81	454	0
	27	26	-	
	28	28		
	29	42		
	30	32	1	
C		34	Dialah (20	1.0)

f) Fase dua

Berikut adalah tahapan-tahapan pada fase dua:

(1) Menghitung Goal

$$Goal = \frac{waktu siklus max - waktu siklus min}{2}$$
$$= \frac{454 - 45}{2}$$
$$= 205 \text{ detik}$$

(2) Perpindahan

Pemindahan tidak dilakukan terhadap elemen kerja dari stasiun maksimal ke stasiun minimal. Hal ini dikarenakan. tidak ada hubungan elemen dikedua stasiun berdasarkan precedence diagram.

g) Hasil akhir percobaan

Tidak terjadinya perubahan pada hasil perhitungan pada fase pertama, hal ini dikarenakan tidak adanya perpindahaan antara stasiun maksimal dan stasiun minimal.

12) Percobaan waktu siklus 661 detik

Berikut langkah-langkah perhitungan Moodie Young:

a) Menghitung jumlah stasiun minimal

Stasiun kerja minimal =
$$\frac{\sum_{i=1}^{N} ti}{WSi}$$
=
$$\frac{(18+17+29.....+42+32)}{661}$$
=
$$\frac{1088}{661}$$
= 1,65
= 2 stasiun

b) Fase satu menyusun stasiun kerja

Susunan stasiun kerja dapat dilihat pada Tabel 4.33.

c) Menghitung Line Efficiency

Berikut adalah perhitungan Line Efficiency (LE):

LE =
$$\frac{\sum_{i=1}^{K} STi}{(K)(CT)} x 100\%$$

= $\frac{(18+17+29.....+42+32)}{(5)(661)} x 100\%$
= $\frac{1088}{(5)(661)} x 100\%$
= 32,9%

d) Menghitung Smoothes Index

Berikut adalah perhitungan Smoothes Index (SI):

SI =
$$\sqrt{\sum_{i=1}^{K} (STi max - STi)^2}$$

= $\sqrt{(29^2 + 595^2 + 525^2 + 616^2 + 452^2)}$
= 1102

e) Menghitung Balance Delay

Berikut adalah perhitungan Balance Delay (D)

D =
$$\frac{(n \times C) - \sum_{i=1}^{n} ti}{(n \times C)} \times 100\%$$

= $\frac{(5 \times 661) - 1088}{(5 \times 661)} \times 100\%$
= $65,6\%$

f) Fase dua

Berikut adalah tahapan-tahapan pada fase dua:

(1) Menghitung Goal

$$Goal = \frac{waktu siklus max - waktu siklus min}{2}$$
$$= \frac{661-45}{2}$$
$$= 294 \text{ detik}$$

Tabel 4.33. Stasiun Kerja Moodie Young Waktu Siklus 661 Detik Fase Satu

	Stasiun	Elemen	Ti	Waktu	Idle	
	Kerja	Kerja	11	Stasiun	Tate	
		7	38			
		8	40			
		9	28			
		10	27			
		14	55			
		15	34			
		16	23			
	1	17	24	632	29	
	1	18	37	032	29	
		19	64			
		20	17		1	
		21	1740			
		22	19			
		23	27	40, 6		1
10		24	65	7	8	
		25,000	60			
		11	23	TE .		
		12	23	66	595	
	HE	13	//20			
_	B	1	18	7 7		
	3	2 //	29	136	525	
1	3	5 E	61 8	130	323	
		6	- 28			
	4	3	17	45	616	
	4	4	28	43	010	
		26	81			
		27	26			
	5	28	28	209 452		
		29	42			
		30	32			
	Sum	her · Data	vana D	iolah (201	10)	

(2) Perpindahan

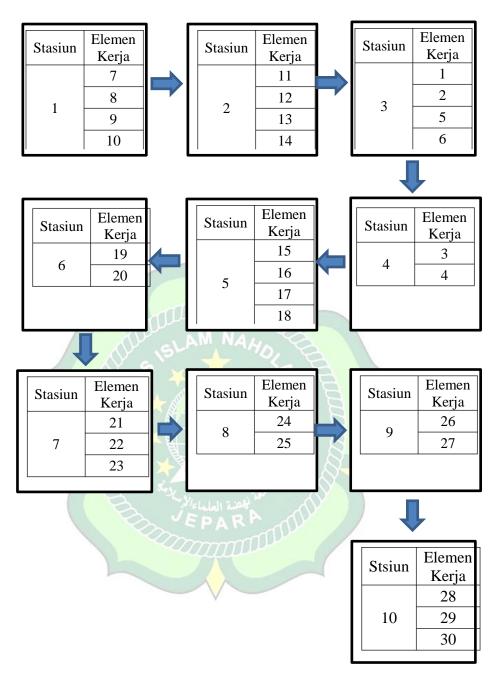
Pemindahan tidak dilakukan terhadap elemen kerja dari stasiun maksimal ke stasiun minimal. Hal ini dikarenakan.

tidak ada hubungan elemen dikedua stasiun berdasarkan *precedence diagram*.

g) Hasil akhir percobaan

Tidak terjadinya perubahan pada hasil perhitungan pada fase pertama, hal ini dikarenakan tidak adanya perpindahaan antara stasiun maksimal dan stasiun minimal.

c. Rangkuman hasil dari percobaan Moodie Young


Perhitungan yang telah dilakukan dari beberapa kali percobaan dengan waktu siklus yang berbeda-beda, menghasilkan tingkat efisiensi yang berbeda-beda, berikut adalah perbandingan efisiensi yang akan disajikan pada Tabel 4.34

Tabel 4.34 Perbandingan Efisiensi Moodie Young

No	Waktu	Jumlah	Line	Smoothes	Balance
NO	Siklus	Stasiun	Efficiency	Index	Delay
1	81 detik	18	74,62%	109,23	25,37%
2	90 d <mark>etik</mark>	17	71,11%	126,38	25,37%
3	100 detik	16	68%	147,57	29,167%
4	106 detik	15	68,43%	161,9	31,57%
5	111 detik	13	75,4%	135,1	24,6%
6	136 detik	10	80%	119	20%
7	156 detik	9	778%	146	22%
8	199 detik	8	68,3%	248	31,7%
9	239 detik	7	65%	290	43,1%
10	306 detik	6	59,3%	397	40,7%
11	454 detik	5	47,9%	651	60,1%
12	661 detik	5	32,9%	1102	65,6%

Sumber: Data yang Diolah (2019)

Perbedaan efisiensi yang ditunjukkan pada Tabel 4.34 menjelaskan bahwa dari serangkaian perhitungan keseimbangan lintasan dengan metode Moodie Young yang menunjukan hasil yang paling baik adalah dengan menggunakan waktu siklus 136 detik, untuk memahami lebih lanjut terhadap elemen kerja pada masing-masing stasiun dapat dilihat pada Gambar 4.5.

Gambar 4.6 Penempatan Elemen Kerja Pada Stasiun Metode Moodie Young Sumber : Data yang Diolah

4.7.4. Perbandingan efisiensi

Perhitungan yang telah dilakukan antara *Ranked Positional Weight* (RPW) dan Moodie Young menghasilkan efisiensi yang berbeda. Meskipun menggunakan jumlah stasiun yang sama, hasil efisiensi antara kedua metode tersebut terdapat perbedaan, perbandingan efisiensi dengan jumlah stasiun yang sama dapat dilihat pada Tabel 4.35. Hasil akhir perbandingan antara stasiun kerja terdahulu dengan hasil dari RPW dan Moodie Young dapat dilihat pada Tabel 4.36

Tabel 4.35 Perbandingan Efisiensi dengan Jumlah Stasiun Yang Sama

Jumlah		RPW	Moodie Young			
	Line	Smoothes	Balance	Line	Smoothes	Balance
Stasiun	Efficiency	Index	Delay	<i>Efficiency</i>	Index	Delay
17	79,1%	93,69	20,99%	71,11%	126,38	25,37%
15	78,84%	91,64	21,16%	68,43%	161,9	31,57%
13	84,5%	84,8	15,5%	75,4%	135,1	24,6%
10	83,7%	80,5	14,3%	80%	119	20%
9	80,6%	109	14,9%	78%	146	22%
8	85%	99,9	14,5%	68,3%	248	31,7%
7	81,4%	166	18,6%	65%	290	43,1%
6	86,3%	94,8	12%	59,3%	397	40,7%
5	87%	94,9	213%	47,9%	651	60,1%

Sumber: Data yang Diolah (2019)

Tabel 4.36 Perbandingan Stasiun Kerja Dahulu, RPW dan Moodie Young

Darda and Caraca	Waktu	Jumlah	Line	Smoothes	Balance
Perbandingan	Siklus	Stasiun	Efficiency	Index	Delay
Stasiun Kerja	81detik	30	44,8%	264	20,99%
Terdahulu	ordenk	30	44,070	204	20,7770
RPW	553 detik	2	98,37%	18	1,627%
Moodie Young	136 detik	10	80%	119,32	20%

Sumber: Data yang Diolah (2019)

Tabel 4.36 menunjukan bahwa metode RPW adalah yang paling baik, dengan menggunakan waktu siklus 553 detik dapat menghasilkan *Line Efficiency* 98,3%, *Smoothes Index* 18 dan *Balance Delay* 1,627%, hasil tersebut memiliki hasil efisiensi yang lebih tinggi dibandingkan dengan stasiun kerja terdahulu dan hasil dari perhitungan dengan menggunakan metode Moodie Young.

