CHAPTER IV

RESEARCH RESULT AND DISCUSSION

In this chapter, the data of the research result will be presented and analyzed. The data are try-out, pre-test, and post-test result. The writer describes and analyses the data. The writer want to know whether any significant difference between the students vocabulary mastery taught with and without using guessing game.

The writer took two classes, class VA has 38 students and VB has 38 students.

4.1 Try-out Analysis

This analysis was meant to find out the validity and the reliability of the instrument before it was used as pre-test and post-test. This test was conducted on January 2, 2020. Try-out test was conducted for VA class. There were thirty eight students' as respondent. There were 30 questions in the try-out test. The try-out test is available in Appendix 3.

4.1.1 Validity

The vocabulary test consist of thirty item numbers from the try-out test that was conducted, it was obtained that item numbers were valid. As mentioned in the third chapter, the test is said to be valid if the result r_{xy} are greater r_{table} . The data was calculated by using Product Moment and the result showed that index validity of item number 3 Was 0,370. Then, the writer consulted the table of r with N= 38 significance level 5% in which then r_{table} is 0,263. The complete result can be seen in appendix 7.

The item test is valid if $r_{count} > r_{table}$

The item test is invalid if $r_{count} < r_{table}$

In the table 5% shows that 38 = 0,263

Table 4.1 The validity of the try-out test

Criteria	Number of item	The total number
Valid	3,4,6,8,10,11,12,13,15,16,17,18,21,22,23,24,25,26, 27,30	20 items
Invalid	1,2,5,7,9,14,19,20,28,29	10 items

From the table above it can be been that the try-out instruments had 20 valid and 10 invalid items. The complete result of try-out analysis can be seen in Appendix 6.

VISNI

4.1.2 Reliability

Reliability show how dependable an instrument it is. A good instrument has to be valid and reliable. After validity of instrument had been done, next analysis was to test the reliability of instrument. The test is reliable if r_{xy} is greater than r-table. The writer used Spearman Brown to computation the validity item number 5 and the result showed

that the r_{11} was 0,540 For α = 5%, N = 38 and the r_{table} was 0,263. The

complete result can be seen in Appendix 8.

Table 4.2

The Reliability computation Using SPSS Calculation

Case Processing Summary

		N	%	
Cases	Valid	38	100.0	
	Excluded ^a	0	.0	
	Total	38	100.0	NAL
a. Lis variable	twise delet delet delet	ion base cedure.	d on all	1
		i i i	*Ant	111 11 11 11 11 11 11 11 11 11 11 11 11
Reliabi	ility Statistic	cs		ジョネ ミシー
Cronba Alpha	ich's N of	Items	× ZUNI	SNU ST

From the SPSS calculation above showed that in Cronbach's Alpha column was 0,711.

The result if Cronbach's Alpha > r_{table} = the item reliable

If Cronbach's Alpha $< r_{table}$ = the item not reliable

The $r_{table} = 0,263$

31

.711

Cronbach's Alpha = 0,711

From the SPSS calculation above, showed that in Cronbach's Alpha column was 0,711 and in the r_{table} was 0,263. In this analysis r_{table} from the

N all of the students are 38. In the table significant 5% shows that number 38 is 0,263. In this part showed that 0,711>0,263. It means that the instrument of the research was reliable.

4.1.3 Pre-Test Analysis

The pre-test was conducted on January for the control group class and experimental group class. This pre-test was held in the first meeting and was conducted to know the initial condition of students' vocabulary in English lesson. The students were asked to answer 20 questions of multiple choice. The instrument can be seen in Appendix 4

Table 4.3

No	Code	Pre- test Result	No	Code	Pre- test Result
1	E-01	70	1	C-01	70
2	E-02	70	2 JE	C-02	75
3	E-03	75	3	C-03	55
4	E-04	65	4	C -04	60
5	E-05	75	5	C-05	75
6	E-06	70	6	C-06	60
7	E-07	75	7	C-07	70
8	E-08	70	8	C-08	65
9	E-09	60	9	C-09	70
10	E-10	75	10	C-10	70

The Data Pre-Test Score Of Experimental And Control Group Class

11	E-11	70	11	C-11	55
12	E-12	60	12	C-12	70
13	E-13	70	13	C-13	70
14	E-14	55	14	C-14	65
15	E-15	70	15	C-15	50
16	E-16	55	16	C-16	65
17	E-23	60	17	C-23	60
18	E-24	50	18	C-24	75
19	E-17	75	19	C-17	60
20	E-26	70	20	C-26	70
21	E-18	60	21	C-18	75
22	E-27	70	22	C-27	65
23	E-19	60	23	C-19	70
24	E-20	65	24	C-20	55
25	E-25	75	25	C-25	70
26	E-21	60	26	C-21	60
27	E-22	70	27	C-22	70
28	E-28	60	28	C-28	65
29	E-29	70	29	C-29	55
30	E-30	75	30	C-30	75
31	E-31	65	31	C-31	75
32	E-32	70	32	C-32	60
33	E-33	75	33	C-33	60

/

34	E-34	60	34	C-34	65
35	E-35	65	35	C-35	50
36	E-36	70	36	C-36	50
37	E-37	70	37	C-37	70
38	E-38	55	38	C-38	60
SUM		2535	SUM		2460
Mean		66.71	Mean		64.74

The table above showed the students' pre-test score of the experimental group and control group. The test was given to the students in preliminary meeting before giving any treatment. The table showed that the mean of pre-test in experimental group class was 66.71 and the mean of pre-test in control group class was 64.74.

Table 4.4

The T-Test Of Pre-Test Score In Experimental Group And The Control Group

	Group	N	Mean	Std. Deviation	Std. Erro Mean	or
Score	Experimental	38	66.7105	6.90440	1.12004	
	Control	38	64.7368	7.61820	1.23584	

Group Statistics

		Lev s for Equ y	ene' Test alit of				<u> </u>				
es				t-test fo	-test for Equality of Means						
		Sig			Sig. (2- taile		Mean e Differe	Std. Error Differe	95% Confidence Interval of the Difference		
		F		Т	Df	d)	nce	nce	Lower	Upper	
Score	Equal varianc es assume d	.28 3	.59 7	1.183	74	.240	1.97368	1.66787	- 1.34961	5.29698	
	Equal varianc es not assume d			1.183	73.29 5	.240	1.97368	1.66787	- 1.35014	5.29751	

Independent Samples Test

UNISNUS

Table above, described the t-test analysis of pre-test in experimental and control group. There was two tables, first table was named "Group statistic" presented the statistical results of pre-test in the experimental group and control group class. The group statistic show that the average between experimental and control group class almost same. The mean score of experimental group class was 66.71 and the mean score of control group class was 64.73. It can be concluded that both of experimental and control group class had same quality.

The second table was named "Independent sample test" described the statistic of this research. The analysis showed that difference was significant at 0.240. It means there was no significant the pre-test score of experimental and

control group class. The significant level of 0,240 > 0,05. It indicate that pre-test was aqual.

In this calculation pre-test score using SPSS above, the df was 74, in the table statistic 74 was 1.665. The result $t_{count} > t_{table}$ it means there is different significant from this score between experimental and control group. If the result $t_{count} < t_{table}$ it means there is no significant difference between experimental group and control group. The result from this calculation 1.183 < 1.665. So, It is indicated that there is no significant difference between experimental group and control group.

4.1.4 Post-Test Analysis

The post-test was conducted on January for the control group class and experimental group class. This post-test was held after the researcher implemented the treatments for three meetings.

The following table shows the score of post test in the experimental and control group.

Table 4.5

The Data Post-Test Score Of Experimental And Control Group Class

No	Code	Post-test Result	No	Code	Post-test Result
1	E-01	85	1	C-01	65
2	E-02	80	2	C-02	75
3	E-03	85	3	C-03	80
4	E-04	85	4	C-04	60

5	E-05	90	5	C-05	65
6	E-06	80	6	C-06	70
7	E-07	95	7	C-07	65
8	E-08	80	8	C-08	75
9	E-09	95	9	C-09	75
10	E-10	80	10	C-10	60
11	E-11	85	11	C-11	80
12	E-12	85	12	C-12	70
13	E-13	90	13	C-13	60
14	E-14	85	14	C-14	65
15	E-15	90	15	C-15	75
16	E-16	75	16	C-16	65
17	E-23	95	17	C-23	60
18	E-24	95	18	C-24	70
19	E-17	85	19	C-17	65
20	E-26	95	20	C-26	70
21	E-18	95	21	C-18	75
22	E-27	90	22	C-27	65
23	E-19	90	23	C-19	75
24	E-20	95	24	C-20	75
25	E-25	85	25	C-25	65
26	E-21	80	26	C-21	65
27	E-22	90	27	C-22	75
28	E-28	80	28	C-28	70

29	E-29	85	29	C-29	65
30	E-30	90	30	C-30	80
31	E-31	95	31	C-31	75
32	E-32	85	32	C-32	75
33	E-33	90	33	C-33	70
34	E-34	80	34	C-34	75
35	E-35	90	35	C-35	70
36	E-36	90	36	C-36	65
37	E-37	75	37	C-37	80
38	E-38	75	38	C-38	75
		12	×	X	2
SUM		3295	SUM		2665
		× 2			× 5
ME	AN	86.71	ME	ANSNU	70.13

The table above showed the students' post-test score of the experimental group and control group. The test was given to the students in after giving any treatment. The table showed that the mean of post-test in experimental group class was 86.71 and the mean of pre-test in control group class was 70.13.

Table 4.6

The T-Test Of Post-Test Score In Experimental Group And The Control Group

	Groups	N	Mean	Std. Deviation	Std. I Mean	Error
Score	Experiment	38	86.7105	6.18152	1.00278	
	Control	38	70.1316	6.09462	.98868	

Group Statistics

Independent Samples Test

	-	Leve Test Equa of Varia	ne's for lity	t_test fr	or Equali	ity of	Means			
		v unit				Sig. (2-	Mean	Std. Error	95% Confide Interval Differer	nce of the
		F	Sig.	Т	Df	taile d)	Differenc e	Differen ce	Lower	Upper
Score	Equal varia nces assu med	.009	.924	11.773	74	.000	16.57895	1.40821	13.773 04	19.384 86
	Equal varia nces not assu med			11.773	73.985	.000	16.57895	1.40821	13.773 03	19.384 87

Table above, described the t-test analysis of post-test in experimental and control group. There was two tables, first table was named "Group statistic"

presented the statistical results of pre-test in the experimental group and control group class. The group statistic show that the average between experimental and control group class almost same. The mean score of experimental group class was 86.71 and the mean score of control group class was 70.13. the mean score of experimental group was higher than control group. It can be conclude that the treatment "Guessing Game" was effective for improving students' vocabulary.

The second table was named "Independent sample test" described the statistic of this research. The analysis showed that difference was significant at 0.000. The significant level of 0,000 < 0,05. It means there was significant of the treatment.

In this calculation pre-test score using SPSS above, the df was 74, in the table statistic 74 was 1.665. The result $t_{count} > t_{table}$ it means there is different significant from this score between experimental and control group. If the result $t_{count} < t_{table}$ it means there is no significant between experimental group and control group. The result from this calculation 11.773 > 1.665. it can be conclude that guessing game can improve students' vocabulary.

4.1.5 Hypothesis Testing

In this research aimed to answer the problem statement of research, the research was find out the effectiveness of Guessing game in teaching vocabulary (An Experimental Research At Fifth Grade of MI. Miftahul Huda Dongos In Academic Year Of 2019/2020). To prove the hypothesis, the data obtained in control group and experimental group were calculated by using t_{test} formula with assumption as follows:

- 1. The t-value was 11.773
- The degree freedom(df) was 74, so the value of t-table was 1.665 in significance level of 0,05.

The result of post-test both experimental group and control group was tvalue (11.773) was higher than t-table (1.665). to conclude, t-value > ttable means that the Null Hypotesis (H0) was rejected and the Alternative hypothesis (Ha) was accepted. Moreover, the stating that "guessing game is effective in teaching vocabulary at the fifth grade of MI Miftahul Huda Dongos Jepara" was accepted.

4.2 Discussion

The aim of this research was to find out the effectiveness of using guessing game in teaching vocabulary at fifth grade of MI Miftahul Huda Dongos in academic year of 2019/2020. In this research, the writer used guessing game as an alternative solution to help students to improve students' vocabulary. Guessing game gave new atmosphere at learning English to the students because they had more chances to interact with their friends. This game increased the students' enthusiasm in learning English especially in vocabulary learning.

In conducting this research, the writer took two classes that are VA and VB. The experimental group class was VA, and the control group class was VB. The writer gave the treatments to the experimental group class by using guessing game. Meanwhile, the control group class taught without using guessing game.

The average of pre-test score for experimental group was 66.71 and posttest was 86.71 the average of pre-test for control group class was 64.74 and posttest was 70.13. From the result above, the mean score of the students' of experimental group and control group in pre-test and post-test. The writer found that the mean of each group almost have the same average score. It could be seen that there is no significant difference in their vocabulary. After conducting the treatment, the mean score of the students' of experimental group was higher than control group class, it proved that there was significant effect of using guessing game in teaching vocabulary.

Based on the data analysis of T-test, the result of post-test in experimental group and control group showed that the t-value was 11.773 and the t-table of 0,05 as the significant level was 1.665 with 74 the degree of freedom (df). The result of the t-value and t-table showed that t-value (11.773) > t-table (1.665). then, the sig. (2 tailed) was 0,000 < 0,05 which H0 is rejected and Ha was accepted. So, it can be conclude that using guessing game in teaching vocabulary was effective to fifth grade of MI. Miftahul Huda Dongos.

In conclution, using guessing game in teaching vocabulary provided the positive effect to students' vocabulary. The students' are able to understand about the material in easy way. Teaching vocabulary using guessing game was effective for the fifth grade students' of MI. Miftahul Huda Dongos.