CHAPTER IV

RESEARCH FINDING

This chapter presents the result and discussion of the research. it is divided into the calculation of trying out of instruments, the data description, the data analysis, and the data interpretation.

4.1 The Calculation of Trying Out Instruments

Trying out of instrument was used to find out the validity and reliability of the instruments.

4.1.1 The Validity of Trying Out Instruments

Formula:

$$r_{xy} = \frac{N \sum XY - (\sum X)(\sum Y)}{\sqrt{\{N \sum X^2 - (\sum X)^2\}\{N \sum Y^2 - (\sum Y)^2\}}}$$

The item test is valid if $r_{xy} > r_{table}$

 $r_{table} = 0.3961$

Table 4.1

The Result Validity Computation Using Manual Calculation

No	The Value of r_{xy}	Criteria		
1.	0,80111	Valid		
2	0,464367	Valid		
3.	0,58057	Valid		
4.	0,4208	Valid		
5.	-0,009128	Invalid		

	6.	-0,52064	Invalid	
	7.	0,67889	Valid	
	8.	0,45210	Valid	
	9.	0,358025	Invalid	
	10.	0,44865	Valid	
	11.	0,42042	Valid	
M	12.	0,19726	Invalid	1
	13.	-0,103029	Invalid	
	14.	0,3825	Invalid	
82	15.	0,18058	Invalid	E
38	16.	-0,0561	Invalid	
Ш	17.	0,61086	Valid	
	18.	0,0381	Invalid	
32	19.	0,17416	Invalid	
E	20.	0,47192	Valid	$\mathcal{O}^{\mathcal{V}}$
	21.	0,39987	Valid	
	22.	0,32532	Invalid	
	23.	0,85481	Valid	
	24.	0,71698	Valid	
	25.	0,383559	Invalid	
	26.	0,50909	Valid	
	27.	-0,0359	Invalid	
				l

28.	-0,64428	Invalid
29.	0,3645	Invalid
30.	0,723	Valid
31.	0,7528	Valid
32.	0,579	Valid
33.	0,7528	Valid
34.	0,59145	Valid
35.	0,48348	Valid
36.	0,3533	Invalid
37.	0,5949	Valid
38.	0,4704	Valid
39.	-0,2265	Invalid
40.	0,2379	Invalid
41.	0,3411	Invalid
42.	0,3239	Invalid
43.	-0,13808	Invalid
44.	0,1537	Invalid
45.	-0,2051	Invalid

From the manual calculation above, it is showed that there are 22 numbers were valid and 23 numbers were invalid. The researcher also used SPSS that was illustrated in appendix 1.

4.1.2 Reliability of Trying Out Instruments

Formula:

$$r_{11} = \left(\frac{k}{k-1}\right) \left(1 - \frac{M(k-M)}{k V_t}\right)$$

The item is reliable if $r_{11} > r_{table}$

$$r_{table} = 0,3961$$

$$k = 45$$

$$M = \frac{\Sigma x}{n} = \frac{507}{25} = 20,28$$

$$V_t = 50,71$$

$$r_{11} = \left(\frac{k}{k-1}\right) \left(1 - \frac{M(k-M)}{kV_t}\right)$$

$$r_{11} = \left(\frac{45}{45-1}\right) \left(1 - \frac{20,28(45-20,28)}{45,50,71}\right)$$

$$r_{11} = \left(\frac{45}{44}\right) \left(1 - \frac{20,28(24,72)}{2281,95}\right)$$

$$r_{11} = (1,0227) \left(1 - \frac{501,32}{2281,95}\right)$$

$$r_{11} = (1,0227)(1-0,219)$$

$$r_{11} = (1,0227)(0,781)$$

$$r_{11} = 0,798$$

From the calculation above, reliability of the instruments was 0,798. With α =5%, N=25, r_{table} =0,3961. It shows that the instrument was reliable. Furthermore, the calculation of reliability test was also using SPSS. It can be seen as follows:

Table 4.2

The Reliability Computation Using SPSS Calculation

Case Processing Summary

		Ν	%
Cases	Valid	25	100.0
	Excluded ^a	0	0.0
	Total	25	100.0

Reliability Statistic

a. Listwise deletion based on all variables in the procedure.

			Som.	12
		Cronbach's		
6. 7		Alpha Based on		X
Ś	Cronbach's	Standardized		2
	Alpha	Items	N of Items	C
3	.720	.845	46	7
			2	

From the SPSS calculation above showed that in Cronbach's Alpha was 0,720. It is different from the result using manual formula, which gets 0,798. But, the difference just at the digit behind comma. The item test is reliable when $r_{11} > r_{table}$. So, the instrument of the test was reliable.

4.2 Data Description

To know the result of the test (pre-test and post-test), the researcher displayed the table of students' scores in both the experimental and control class. It is showed the students' achievement in pre-test and pos-test scores.

4.2.1 Pre-test Scores

Table 4.3 below showed the pre-test scores of the

experimental class and control class.

Table 4.3

The Students' Pre-test Scores

	Students	Experimental Class	Control Class		
50).	1	50	65		
	2	70	65		
	3	50	60		
	4	60	65		
	5 0	AM 75VA	75		
	6	45	50		
	7	50	-45		
	8	75	80		
8.	9	60-50	50		
84	10		80		
	11	60	65		
	12	60	50		
	13		50		
	14 🗡	50	65		
	15	65	70		
	16	55	50		
	17	50	55		
	18	60	60		
	19	40	75		
	20	60	75		
	21	75	65		
	22	55	65		
	23	50	70		
	24	65	50		
	25	65	65		
	26	60	50		
	27	65	60		
	28	65	65		
	29	55	60		
	30	75	50		

Σ	1790	1850
Mean	59.66666667	61.66666667

The table above showed the students' pre-test score in the experimental class and control class. The pre-test was given to the students before they given the treatment. The mean score of the experimental class was 59,6 and the control

class was 61,6.

4.2.2 Post-test Scores

Table 4.5 below showed the post-test scores of the experimental class and control class.

Table 4.5

The Students' Post-test Scores

Students	Experimental Class	Control Class	
61	50	-70	
2	85	60	
3 4	75	60	
4	90	55	
5		80	
6	60	40	
7	45	50	
8	<mark>8</mark> 5	90	
9	9 85		
10	80	85	
11	60	80	
12	70	50	
13	80	45	
14	85	80	
15	75	75	
16	70	65	
17	60	60	

18	85	85	
19	70	70	
20	85	90	
21	95	60	
22	60	70	
23	70	80	
24	80	60	
25	75	55	
26	75	65	
27	65	60	
28	75	55	
29	50	85	
30	95	70	
Σ	2235	2010	
Mean	74.5	67	

The table above showed the students' post-test score in the experimental class and control class. The post-test was given to the students in the last meeting after the treatment was given. The mean score of the experimental class was 74,5 and the control class was 67.

4.2.3 Gained Scores

The gained score was used to differentiate the improvement of the experimental class and control class. Table 4.5 below described the gained scores of the experimental class and control class. Both of classes had 30 students.

Table 4.5

The Gained Scores of the Experimental and Control Class

Students	Students Experimental Class Control Cla	
1	10	5

Mean	15.6	5.5
Σ	470	165
30	20	20
29	-5	25
28	PAIR P	-10
27	محمد 0 الملماء	0
26	15	15
25	10	
24	///S 15	10
23	20	> 10
22	5	
21	25	-5
20	25	15
19	30	-5
	25	-25
17	-10	5
16	15	15
15	<u> </u>	5
14	35	15
12	10	-5
11	10	0
10	0	15
9 10	25 25	<u> </u>
8	10	10
7	-5	5
6	15	-10
5	35	5
4	30	-5
3	25	0
2	15	-5

The table above showed that the gained score of the experimental class was higher than the control class. The mean gained score of the experimental class was 15,6 and the control class was 5,5.

4.3 Data Analysis

The data analysis was used to answer the research question whether Crossword Puzzle was effective to improve the students' vocabulary mastery of the seventh graders of SMP N 1 Batealit Jepara or not. In this research, the researcher was used T-test in both classes (experimental class and control class) by manual calculation as follows:

Table 4.6

The Comparison Scores of Each Student in the Experimental

			and the second			
Students	X	Y	X-MX	Y-MY	$(X-MX)^2$	$(Y-MY)^2$
1 🔊	10	5	-5.6	-0.5	31.36	0.25
2	15	-5	-0.6	-10.5	0.36	110.25
3	25	0	9.4	-5.5	88.36	30.25
4	30	-5	14.4	-10.5	207.36	110.25
5	35	5	19.4	-0.5	376.36	0.25
6	15	-10	-0.6	-15.5	0.36	240.25
7	-5	5	-20.6	-0.5	424.36	0.25
8	10	10	-5.6	4.5	31.36	20.25
9	25	10	9.4	4.5	88.36	20.25
10	25	5	9.4	-0.5	88.36	0.25
11	0	15	-15.6	9.5	243.36	90.25
12	10	0	- <mark>5.</mark> 6	-5.5	31.36	30.25
13	10	-5	<mark>-5.</mark> 6	-10.5	31.36	110.25
14	35	15	19.4	9.5	376.36	90.25
15	10	5	-5.6	-0.5	31.36	0.25
16	15	15	-0.6	9.5	0.36	90.25
17	10	5	-5.6	-0.5	31.36	0.25
18	25	25	9.4	19.5	88.36	380.25
19	30	-5	14.4	-10.5	207.36	110.25
20	25	15	9.4	9.5	88.36	90.25
21	25	-5	9.4	-10.5	88.36	110.25

Class and the Control Class

Mean	15,6	5.5	0.06667	0	114.56	95.5833
Σ	470	165	2	0	3436.8	2867.5
30	20	20	4.4	14.5	19.36	210.25
29	-5	25	-20.6	19.5	424.36	380.25
28	10	-10	-5.6	-15.5	31.36	240.25
27	0	0	-15.6	-5.5	243.36	30.25
26	15	15	-0.6	9.5	0.36	90.25
25	10	-10	-5.6	-15.5	31.36	240.25
24	15	10	-0.6	4.5	0.36	20.25
23	20	10	4.4	4.5	19.36	20.25
22	5	5	-10.6	-0.5	112.36	0.25

The procedures of calculation are as follow:

a. Determining Mean of variable X, with formula:

$$Mx = \frac{\Sigma x}{N}$$
$$= \frac{470}{30}$$
$$= 15.6$$

b. Determining Mean of variable Y, with formula:

$$My = \frac{\Sigma y}{N}$$
$$= \frac{165}{30}$$
$$= 5,5$$

c. Determining Standard Deviation Score of Variable X, with formula:

$$SDx = \sqrt{\frac{\sum x^2}{N}}$$
$$= \sqrt{\frac{3436,8}{30}}$$

$$=\sqrt{114,56}$$

= 10,7

1.6

d. Determining Standard Deviation Score of Variable Y, with formula:

$$SDy = \sqrt{\frac{\Sigma y^2}{N}}$$
$$= \sqrt{\frac{2867,5}{30}}$$
$$= \sqrt{95,58}$$
$$= 9,77$$

e. Determining standard error mean of variable X, with formula:

$$SE_{Mx} = \frac{SDx}{\sqrt{N-1}}$$

= $\frac{10,7}{\sqrt{30-1}}$
= $\frac{10,7}{\sqrt{29}}$
= $\frac{10,7}{5,3}$
= 2,01

f. Determining standard error mean of variable Y, with formula:

$$SE_{My} = \frac{SDy}{\sqrt{N-1}}$$
$$= \frac{9,77}{\sqrt{30-1}}$$
$$= \frac{9,77}{\sqrt{29}}$$

$$=\frac{9,77}{5,3}$$

= 1,84

g. Determining standard error mean of difference mean of variable X and mean of variable Y, with formula:

$$SE_{Mx-My} = \sqrt{SE_{Mx}^{2} + SE_{My}^{2}}$$

= $\sqrt{(2,01)^{2} + (1,84)^{2}}$
= $\sqrt{4,0401 + 3,3856}$
= $\sqrt{7,4257}$
= 2,72
h. Determining to with formula:
 $t_{0} = \frac{Mx - My}{SE_{Mx-My}}$
= $\frac{15,6 - 5,5}{2,72}$
= $\frac{10,1}{2,72}$
= 3,713
i. Determining t-table in significant level 5% with *df*.
df = (Nx+Ny)-2

$$df = (Nx+Ny)-2$$

= (30+30)-2
= 60-2
= 58

From the manual calculation above, the degree of freedom (*df*) was 58 and the critical value of *df* 58 by using the degree of significance 5% was 2,000 and the t_{observe} was 3,713. Shortly, it can be conclude that the post-test score of the experimental class was higher than the score of the control class. The comparison between t_{observe} and t_{table} is $3,731 > 2,000 = t_{observe} > t_{table}$.

In addition, the researcher also calculate using SPSS calculation. The researcher took t-test measurement of gained score in both of classes. It was needed to know whether there was significance difference between the experimental class and control class to answer whether the alternative hypothesis (H_a) was accepted or rejected. The t-test calculation can be seen as following table 4.7:

Table 4.7

The t-test of Gained Score in the Experimental Class and Control Class

	Group	Statistics		
			Std.	Std. Error
Class	N	Mean	Deviation	Mean
Gained Experimental Class	30	15.67	10.886	1.988
Control Class	30	5.50	9.944	1.815

Group Statistics

Independent Samples Test

Levene's	
Test for	
Equality o	f
Variances	t-test for Equality of Means

		F	Sig.	Т	df	Sig. (2- taile d)	Mean Differe nce	Std. Error Differe nce	Conf Interva	5% idence al of the erence Upper
Gained	Equal variances assumed	.312	.578	3.777	58	.000	10.167	2.692	4.778	15.555
	Equal variances not assumed			3.777	57.531	.000	10.167	2.692	4.777	15.556

Based on the tables above, there was a different significance score of the experimental class and control class. The significance was 0,578 and t_{observe} was 3,777 with *df* 58. The value of *df* 58 by using degree of freedom 5% was 2,000. So, $t_{observe} > t_{table} = 3,777 >$ 2,000.

In this research, the researcher also took t-test measurement of pre-test and post-test scores. It is used to see the differences of the mean score of pre-test and post-test in the experimental and control class. The t-test can be seen as following table 4.8 and 4.9.

Table 4.8

The t-test of Pre-test Scores in the Experimental Class and Control Class

		0100	building		
	Class	N	Mean	Std. Deviation	Std. Error Mean
Pretest Scores	Experimental	30	59.67	9.371	1.711
	Control	30	61.67	9.942	1.815

Group Statistics

	Independent Samples Test											
		Leve Test										
		Equali Varia	•		t-test for Equality of Means							
				Me 95% Co Sig. an Std. Interval					Interva	Confidence rval of the fference		
		F	Sig.	t	df	tailed	fere nce	Differ ence	Lower	Upper		
Pretest Scores	Equal variances assumed	.338	.56 3	802	58	.426	-2	2.494	-6.993	2.993		
	Equal variances not assumed			802	57.798	.426	-2	2.494	-6.994	2.994		

Based on the tables above, the mean sore of control class was 61,6

while experimental class was 59,6. It means that the mean sore of control

class was higher than experimental class.

Table 4.9

The t-test of Post-test Scores in the Experimental Class and Control Class

Group Statistics

		Groups	u usues		
					Std. Error
	Class	Ν	Mean	Std. Deviation	Mean
Posttest Scores	Experimental	30	74.50	13.856	2.530
	Control	30	67.00	13.620	2.487
			and the second se		1

				mucpenu	chi San	ipics it	อเ				
		Test Equal	Levene's Test for quality of Variances t-test for Equality of Me								
						Sig. (2- tailed	Mea n Diffe	Std. Error Differ	95% Co Interva Diffe	l of the	
		F	Sig.	t	Df)	rence	ence	Lower	Upper	
Posttest Scores	Equal variances assumed	.072	.789	2.114	58	.039	7.5	3.547	.399	14.601	

Independent Samples Test

Equal variances not assumed		2.114	57.9 83	.039	7.5	3.547	.399	14.601	
From the tables above, the mean sore of experimental class was 74,5									

while control class was 67. The significance was 0,789. It means that there was significance difference between experimental class and control class.

4.4 Data Interpretation

This research was held to answer the question whether the use of Crossword Puzzle was effective to improve the students' vocabulary mastery of the seventh graders of SMP N 01 Batealit Jepara or not. In order to answer the question, the researcher writes the Null Hypothesis (H_0) and the Alternative Hypothesis (H_a) as follows:

- a. The Null Hypothesis (H_o): There is no a significant difference in students' vocabulary mastery between the students who are taught by using crossword puzzle and those who are not using crossword puzzle.
- b. The Alternative Hypothesis (H_a): There is a significant difference in students' vocabulary mastery between the students who are taught by using crossword puzzle and those who are not using crossword puzzle.

To prove the hypothesis, the researcher calculated the obtained data in experimental class and control class by using *t-test* formula with the assumption as follows:

- a. If $t_o > t_{table}$ the Null Hypothesis (H_o) was rejected and the Alternative Hypothesis (H_a) was accepted. It was proven that Crossword Puzzle was effective to improve the students' vocabulary mastery.
- b. If $t_o < t_{table}$ the Null Hypothesis (H_o) was accepted and the Alternative Hypothesis (H_a) was rejected. It was proven that Crossword Puzzle was not effective to improve the students' vocabulary mastery.

Based on the analysis of the results above, there was difference significance between the gained score in experimental class and control class. The t-test results by using manual calculation and also SPSS were same, despite there was little difference in any digit behind the comma. The analysis of the results above showed that the experimental class had the gained score higher than the control class. Furthermore, there was a significance score in the experimental class and control class. From manual calculation t_0 was 3,713 while by using SPSS t_0 was 3,777.

From the results above, it can be seen that the t-test was higher than t-table (3,777 > 2,000). It can be conclude that Crossword Puzzle was effective to improve the students' vocabulary mastery since H_a was accepted and H_o was rejected. It can be drawn a conclusion that Crossword Puzzle can impact significantly the students' vocabulary mastery of the seventh graders in SMP N 1 Batealit Jepara.