BAB III
METODOLOGI PENELITIAN

3.1. Studi Eksperimental

Studi eksperimental ini dilakukan dengan membuat 3 jenis beton dengan masing-masing mix design berjumlah 18 buah untuk diuji sehingga mendapatkan data yang diperlukan. Penelitian ini akan mengkaji pengaruh curring pada masing-masing mix design agar mendapatkan kuat tekan yang terbaik dari perbandingan umur dan setiap mix design. Benda uji menggunakan beton silinder dengan ukuran diameter 10,5 cm dan tinggi 21 cm, yang mana cetakan benda uji di penelitian ini dibuat sendiri menggunakan pipa air berdiameter 4 inch merk maspion.

Untuk pembuatan benda uji dibutuhkan beberapa tahapan, diantaranya:

1. Persiapan bahan campuran beton
2. Persiapan peralatan
3. Pengujian bahan campuran beton
4. Pembuatan beton
5. Curring
6. Pengujian beton.

Dalam tahap persiapan dan pembuatan, pelaksanaannya membutuhkan waktu Mei-Juni dan dilakukan di laboratorium bahan konstruksi Teknik Sipil UNISNU Jepara. Adapun beberapa kegiatan yang dilakukan adalah: pengadaan bahan material, pemeriksaan bahan beton, pembuatan beton, perawatan (curring), serta pemeliharaan beton.

Sedangkan dalam pengujian beton, dilaksanakan pada bulan juni di Laboratorium Teknik Sipil Universitas Nahdlatul Ulama, Jepara.
3.2. Bahan Penyusun Beton

Bahan-bahan yang digunakan dalam penelitian ini adalah:

a. Semen \textit{portland} konposit (PCC)
 Pada penelitian ini digunakan semen portland tipe (PCC), merk semen tiga roda dengan satuan 40 kg/sak.

b. Air
 Air yang digunakan adalah air dari PDAM Jepara, yang tidak mengandung lumpur, minyak, dan tidak mengandung garam atau zat-zat lain yang dapat larut dan merusak beton.

c. Agregat kasar
 Agregat kasar disini menggunakan kerikil atau batu pecah.

d. Agregat halus
 Agregat halus disini menggunakan pasir muntilan.

e. \textit{Fly ash}
 \textit{Fly ash} yang digunakan adalah \textit{fly ash} dari limbah PLTU Tanjung Jati B Desa Tubanan, Jepara. \textit{Fly ash} tersebut termasuk ke dalam kategori kelas F.

f. Alkali aktivator
 Alkali aktivator yang dipakai adalah campuran dari sodium hidroksida (NaOH) dan sodium silikat (Na$_2$SiO$_3$)

3.3. Peralatan

Peralatan yang dipergunakan dalam penelitian ini antara lain:

a. Timbangan
 Timbangan dengan kapasitas 10 kg dan pembacaan per 1 gram digunakan untuk menimbang berat bahan beton dan berat benda uji silinder.

b. Ayakan
 Ayakan dalam penelitian ini yang digunakan adalah ayakan manual, dengan gradasi agregat yang lolos: pasir $<$4,75 mm dan kerikil 4,75-40 mm.
c. Gelas Ukur
Gelas ukur digunakan untuk mengukur volume cairan atau dalam penelitian ini untuk mengukur kadar lumpur dari pasir.

d. Alat Vicat
Alat vicat digunakan untuk mengetahui pengaruh waktu daya ikat semen terhadap beton.

e. Cetakan Silinder
Cetakan silinder dalam penelitian ini adalah cetakan buatan sendiri dari pipa air dengan ukuran diameter 10,5 cm dan tinggi 21 cm.

f. Mesin pengaduk beton (concrete mixer)
Alat ini digunakan untuk mengaduk bahan campuran beton.

g. Kerucut abrams
Kerucut abrams digunakan untuk mengukur workability adukan dengan percobaan slump test, dan juga tongkat besinya.

h. Mesin uji tekan
Untuk uji kuat tekan beton menggunakan Digital Compression Mechine dengan kapasitas kuat tekan 2000 KN.

i. Alat bantu
Selama proses penelitian pembuatan beton juga digunakan sebuah alat bantu seperti, ember, sendok semen, dan gayung.

3.4. Pembuatan Benda Uji

Dalam pembuatan benda uji di penelitian ini menggunakan beton silinder dengan ukuran diameter 10,5 cm dan tinggi 21 cm. Persiapan pembuatan benda uji semua bahan pembuatan beton dipersiapkan terlebih dahulu dan dalam jumlah yang telah ditentukan, seperti spesifikasi berikut ini:
a. Beton Konvensional

Bahan yang harus dipersiapkan untuk pembuatan beton konvensional adalah agregat kasar, agregat halus, semen, dan air. Jumlah mix design 18 dengan proses curring (perandaman) 7 hari, 14 hari, dan 28 hari yang masing-masing hari ada 6 buah benda uji, 3 untuk curring air tawar dan 3 untuk curring air laut.

b. Beton Geopolymer 8 M

Bahan yang harus dipersiapkan untuk pembuatan beton geopolymer 8 M adalah agregat kasar, agregat halus, fly ash, Alkali aktivator. Jumlah mix design 18 dengan proses curring (perandaman) 7 hari, 14 hari, dan 28 hari yang masing-masing hari ada 6 buah benda uji, 3 untuk curring air tawar dan 3 untuk curring air laut.

c. Beton geopolymer 12 M

Bahan yang harus dipersiapkan untuk pembuatan beton geopolymer 12 M adalah agregat kasar, agregat halus, fly ash, Alkali aktivator. Jumlah mix design 18 dengan proses curring (perandaman) 7 hari, 14 hari, dan 28 hari yang masing-masing hari ada 6 buah benda uji, 3 untuk curring air tawar dan 3 untuk curring air laut.

Tabel 3.1 Benda Uji Yang Akan Dibuat

<table>
<thead>
<tr>
<th>NO</th>
<th>Beton</th>
<th>Curring</th>
<th>Pembuatan Benda Uji</th>
<th>Jumlah</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>7 hari</td>
<td>14 hari</td>
</tr>
<tr>
<td>1</td>
<td>Konvensional</td>
<td>AT</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AL</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Geopolymer 8 M</td>
<td>AT</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AL</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Geopolymer 12 M</td>
<td>AT</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AL</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Keterangan:
- AT = air tawar
- AL = air laut
3.5. *Mix Design*

Mix design beton konvensional disini menggunakan agregat sebanyak 65% dan aktivator sebanyak 35%. Agregat terbagi dari 60% agregat kasar (kerikil) dan 40% agregat halus (pasir), sedangkan aktivator terbagi dari semen 65% dan air 35%. Seperti pada diagram dibawah ini:

![Diagram Beton Konvensional](image)

Gambar 3.1 Presentase agregat beton konvensional

Mix design beton geopolymer disini menggunakan agregat sebanyak 65% dan aktivator sebanyak 35%. Agregat terdiri dari 60% agregat kasar (kerikil) dan 40% agregat halus (pasir), sedangkan aktivator terbagi dari *fly ash* 65% dan alkali aktivator 35% dengan perbandingan NaOH (1) : Na$_2$SiO$_3$ (2). Seperti pada diagram dibawah ini:

![Diagram Beton Geopolymer](image)

Gambar 3.2 Presentase agregat beton geopolymer
Untuk takaran (gr) bahan campuran beton dalam penelitian ini, dapat kita lihat secara lengkap seperti pada tabel dibawah ini:

<table>
<thead>
<tr>
<th>beton</th>
<th>Jumlah</th>
<th>Material (gram)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Kerikil</td>
</tr>
<tr>
<td>konvensional</td>
<td>1 buah</td>
<td>1677</td>
</tr>
<tr>
<td></td>
<td>18 buah</td>
<td>30186</td>
</tr>
<tr>
<td>Geopolymer 8 M</td>
<td>1 buah</td>
<td>1677</td>
</tr>
<tr>
<td></td>
<td>18 buah</td>
<td>30186</td>
</tr>
<tr>
<td>Geopolymer 12 M</td>
<td>1 buah</td>
<td>1677</td>
</tr>
<tr>
<td></td>
<td>18 buah</td>
<td>30186</td>
</tr>
</tbody>
</table>

3.6. Proses *Curring*

Perawatan (*curring*) beton dalam penelitian ini membandingkan hasil dari *curring* air laut atau air tawar yang menghasilkan kuat tekan tinggi baik dari beton geopolymer ataupun beton konvensional. *Curring* dengan perendaman menggunakan air laut dan air tawar, dengan umur perendaman 7 hari, 14 hari dan 28 hari. Air laut diambil dari Balai Besar Perikanan Budidaya Air Payau (BBPBAP) Jepara dan air tawar diambil dari air Perusahaan Daerah Air Minum (PDAM) Jepara.

3.7. Diagram Alir Penelitian

Awal mula penelitian ini dengan melakukan konsultasi kepada dosen pembimbing dan mencari studi literatur agar penelitian berjalan dengan baik dan tidak ada kekeliruan, kemudian mempersiapkan bahan-bahan dan peralatan, dan menguji behan campuran beton tersebut. Setelah itu dilaksanakan proses pembuatan beton, *curring*, kemudian baru diuji kuat tekan beton dan daya serap air beton.
Mulai

Studi Literatur Dan Konsultasi

Persiapan bahan dan material

Pengujian Bahan Material

Agregat kasar:
 - abrasi *(loss angels)*

Agregat halus:
 - analisis saringan
 - kadar lumpur
 - kadar air
 - kadar organis

Binder:
 - semen: waktu
 - ikat awal
 - fly ash: EDX
 - waktu
 - ikat awal

Mix Design

Pembuatan Benda Uji

Proses Curing

Perendaman air laut

Perendaman air tawar

A
Gambar 3.3 Diagram alir penelitian
3.8. **Time Schedule Penelitian**

Tabel 3.3 Time Schedule Penelitian

<table>
<thead>
<tr>
<th>NO</th>
<th>Uraian Kegiatan</th>
<th>Mei 2018</th>
<th></th>
<th></th>
<th>Juni 2018</th>
<th></th>
<th></th>
<th>Juli 2018</th>
<th></th>
<th></th>
<th>Agustus 2018</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pembagian Pembimbing</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Pengajuan Judul</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Penyusunan Judul</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bimbingan Dosen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Studi Pendahuluan</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Penyusunan BAB I & II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Penyusunan BAB III</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Revisi Proposal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Seminar Proposal</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Penyerahan Proposal</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Pelaksanaan Penelitian</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Penyusunan BAB IV</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Penyusunan BAB V</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Pengujuan Penelitian</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Laporan Penelitian</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Revisi dan Penjilidan</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Ujian Skripsi</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Pengumpulan Skripsi</td>
<td></td>
</tr>
</tbody>
</table>